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Calculations of the free energy difference of solvation are used to study the contributions arising from alchemical
changes of bond stretching and angle bending energy terms in the force field. The results illustrate the theoretical
analysis of such terms given in the companion paper (Boresch, S.; Karplus, M. The Role of Bonded Terms
in Free Energy Simulations: 1. Theoretical Analysis.J. Phys. Chem. A1998, 103, 10310). Three model
systems are investigated: (a) two one-dimensional harmonic oscillators interacting with a third particle that
represents the solvent, (b) the aqueous solvation of two diatomic molecules, and (c) the aqueous solvation of
ethane and methanol. In each case, the computations are carried out with both a single topology and a dual
topology methodology. A comparison of free energy components of the single and double free energy
differences obtained in the calculations makes it possible to identify the three contributions that the theoretical
analysis showed were involved, i.e.,Vibrational, pmf-type, andJacobian factorterms.The verification of the
theoretical analysis by illustrative examples provides the basis for addressing the question of whether the
so-calledself-termscan make significant contributions to double free energy differences. This is accomplished
by identifying the effect of coupling of the three contributions from bonded energy terms on a double free
energy difference. For the model systems studied, coupling and, hence, self-terms are found to be of little
importance. The analysis resolves the ambiguities concerning this issue in the literature.

1. Introduction

Although bonded energy terms (bond stretching and angle
bending terms) have often been discussed in the literature and
cited as problematic, no systematic investigation concerning their
role in free energy simulations has been published. Computa-
tional procedures for evaluating them explicitly or implicitly
vary considerably, and a number of practical problems related
to bonded terms have been encountered in free energy simula-
tions. Bonded energy terms have been omitted from the free
energy formalism by some.1,2 Others included these terms and
reported severe convergence problems in the calculations.3,4

Moreover, there are conflicting views concerning the importance
of bonded energy terms in the literature.3-9 This is reflected in
the discussion regarding the relevance of the so-calledself-term5

or intraperturbed group6,9 contribution, since this quantity is
expected to be dominated by bonded energy terms.5,6

A detailed theoretical analysis of the role of bonded energy
terms in free energy simulations was given in the companion
paper.10 It was shown that their contribution depends foremost
on the simulation methodology, i.e., single or dual topology.11

Many apparent contradictions in the literature3-9 were identified
as resulting from an incomplete understanding of these two
commonly used approaches. In single topology simulations, free
energy differences resulting from an alchemical change in a
bond (angle) term were demonstrated to arise from the following
three physical effects: (i)Vibrational contributions from

changes in the force constants, (ii)Jacobian factorcontributions
from changes in the equilibrium bond lengths and bond angles
in the absence of nonbonded interactions, and (iii)pmf-type
contributions which result from the change in nonbonded
interaction (e.g., solute-solvent interactions) if the equilibrium
(average) geometry of a molecule is altered. In dual topology
simulations one has to distinguish between the use of an ideal
gas molecule end state and an ideal gas atom end state. In the
former case, which appears to be the more practical dual
topology approach, vibrational and Jacobian factor contributions
are omitted. Consequently, single free energy differences
obtained in a dual topology method with an ideal gas molecule
end state will differ from those obtained in single topology
methods or dual topology methods with an ideal gas atom end
state. Nevertheless, correct double free energy differences are
obtained in all cases. All three contributions are obtained in
dual topology methods when an ideal gas atom end state is used;
however, the pmf-type free energy contribution is projected on
nonbonded free energy components.

The separation of bonded free energy contributions into
vibrational, Jacobian factor and pmf-type contributions is based
on the rigid rotator harmonic oscillator (RRHO) approximation.
Even though it is not exact, it is often accurate and always useful
for obtaining an understanding of the underlying physical
processes, as well as of the differences between the three
methods (single vs the two dual topology methods). Since free
energy simulation methods do not rely on the RRHO ap-
proximation, all three methods include the coupling contributions
that arise from anharmonic terms and the violation of the rigid
rotator assumption.
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The degree of coupling between the three contributions is
directly related to the question of self-terms. A self-term5 or
intragroup perturbed interaction6 arises from the change in the
intramolecular or intragroup energy terms of the part of the
system that is alchemically mutated, i.e.,∆Uintra in the notation
of the companion paper10, as opposed to contributions resulting
from the change of interaction caused by the mutation with the
(unaltered) part of the system. If the RRHO approximation were
exact, vibrational and Jacobian factor contributions of corre-
sponding (parallel) parts of a thermodynamic cycle would
cancel; i.e., no contributions from bonded energy terms to the
self-term would be obtained. If, on the other hand, coupling is
significant, no such cancelation can be expected and self-term
contributions will result. Computations for model systems are
required to determine the size of the coupling and, hence, of
self-term contributions from bonded energy terms.

In this paper we illustrate and complement the theoretical
analysis given in the companion paper10 by applying it to
calculations of the free energy differences of solvation for
selected model systems. They are (a) two one-dimensional
harmonic oscillators interacting with a third particle that
represents the solvent, (b) the aqueous solvation of two diatomic
molecules, and (c) the aqueous solvation of ethane and methanol.
To ensure the reliability of the results, each simulation is carried
out at least twice unless, as is the case for the one-dimensional
system, an exact reference result can be obtained. The paper is
organized as follows. We first describe the three systems that
we examine, the details of the simulations, and the rationale
for choosing them (section 2). In particular, the properties of
the hybrid potential energy functions used are presented, and
differences between single and dual topology methodologies
are discussed (cf. also sections 2b and 2e of the companion
paper10). Section 3 contains the results of the calculations. On
the basis of the theoretical analysis10 combined with the insights
from actual calculations, we present our conclusions regarding
the practical aspects of the computation of bonded free energy
contributions, the interpretation of the bonded terms and the
related question of the importance of self-terms (section 4).

2. Model Systems and Details of Simulations

2a. Free Energy Difference of “Solvation” of a One-
Dimensional Model System.The first system is concerned with
the “solvation” free energy difference between two one-
dimensional harmonic oscillator solutes interacting with a third
particle that represents the solvent (see Scheme 1). Three sets
of computations aimed at investigating the different types of
contributions to bond free energy components and, in particular,
coupling between vibrational and pmf-type contributions were
carried out. The model is taken from a recent publication by
Severance et al.,12 who used it to verify the proposed algorithm
to incorporate flexible bond terms in the exponential formula
(EF) approach of free energy difference simulations. We selected
this model system to examine the effect of alchemical changes
in the calculation of the free energy difference of solvation
between two one-dimensional diatomic molecules, the simplest
system discussed in section 2c of the companion paper.10

The distance between particles B1 and B3 is kept fixed at 5
Å. Particle B2 is bound to B1 by a harmonic oscillator term
and in “solution” interacts through a Lennard-Jones potential
with B3; particle B1 does not interact with B3. The two solutes

i and f represent harmonic oscillators, one withKi ) 260 kcal/
(mol Å2) and r0,i ) 1.526 Å and the other withKf ) 80 kcal/
(mol Å2) and r0,f ) 0.3 Å. The van der Waals interaction
between B2 and B3 is described byε ) -0.175 kcal/mol and
σ ) 3.905 Å in both states (i and f). No charges are present.

Figure 1 depicts the paths that were used in the first set of
simulations. The thermodynamic cycle in Figure 1 is analogous
to that in Figure 1 of the companion paper10 with S1 and S2
replaced by i and f. Transformation of the “solute” B1-B2 from
i to f in the absence of interactions with B3 represents the gas
phase (∆A3); ∆A4 is the free energy difference between i and f
in the presence of the “solvent” B3. The bond term (K, r0)
changes along these alchemical paths. The chemical paths (∆A1

and ∆A2 of Figure 1) correspond to transferring i and f from
the gas phase into “solution”, which is accomplished by turning
on the van der Waals interaction between particles B2 and B3
for system i and f, respectively. We also calculated the change
(i)solv to (f)gas (∆A5 of Figure 1) in which all three terms
describing the system (force constant K, equilibrium bond length
r0, and van der Waals parametersε, σ) are changed in a
concerted fashion; i.e., they were modified simultaneously in
going from the initial to the final state.

As pointed out by Severance et al.,12 the configurational
partition functions for this system and, thus, the free energies
can be obtained by numerical integration. Numerical integrations
were carried out using the NIntegrate[] function of Math-
ematica.13 All free energy differences depicted in Figure 1 were
also calculated with the PERT module of CHARMM,14 which
in this case was used to set up the single topology, as well as
the dual topology calculations, in which bond energy terms
where not scaled (ideal gas molecule end state). Slow conver-
gence resulting in high statistical uncertainties is observed when
simulation methods are used to attempt dual topology simula-
tions in which the bond energy terms are scaled to a limiting
value ofλ as described in section 2d of the companion paper.10

To avoid these numerical problems, Mathematica13 is employed
to evaluate〈∂U/∂λ〉λ, 〈∂UvdW/∂λ〉λ, and〈∂Ubond/∂λ〉λ directly by
numerical integration of the respective integrals for five values
of λ (0.1, 0.3, ..., 0.9). The van der Waals free energy component
is obtained in the standard manner by numerical integration of
the data-points with the trapezoidal rule. The values for〈∂Ubond/
∂λ〉λ are fitted toCo + C1/λ (Co + C1/(1 - λ)) as described in
section 2d of the companion paper;10 this function was integrated
from ε to 1 (0 to 1- ε), whereε is given by eq 40 of the
companion paper.10

Atoms B1 and B3 are not allowed to move during the
simulations. In the single topology calculation, one B2 atom is

Figure 1. Thermodynamic cycle for the one-dimensional model
system.∆A3 and∆A4 correspond to the alchemical mutations changing
molecule B1-B2 into B1dB2 in the “gas phase” and in “solution”.
∆A1 and ∆A2 correspond to the chemical paths along which transfer
free energies between the “gas phase” and “solvated phase” would be
measured. The path∆A5 is included to illustrate a case where bonded
and nonbonded interactions are changed simultaneously as a result of
an alchemical mutation.

Scheme 1

B1sB2 B3
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defined, and the energy terms are changed as a function of the
coupling parameterλ (i: λ ) 0, f: λ ) 1). In dual topology,
two B2 atoms (B2i corresponding to the initial state and B2f

corresponding to the final state) are present simultaneously.
Thus, there are four atoms in the dual topology calculations
and only three atoms in the single topology calculations. In
principle, the dual topology system could have been set up by
defining two molecules (four atoms) on top of each other.
However, in realistic applications the full molecule (such as a
protein) is not duplicated, and it is best to duplicate only the
part that changes to keep the two molecules aligned as much
as possible. To make the difference between single and dual
topology clear, we give expressions for the hybrid potential
function used to calculate∆A4. The single topology hybrid
potential energy function is

and the two different dual topology hybrid functions are

and

The equations indicate which atoms are involved in each
energy term; the subscripts and superscripts i and f stand for
initial (harmonic oscillator i in solution) and final state (harmonic
oscillator f in solution), respectively. Aside from the difference
in the number of atoms, the bond energy term is treated
differently in the three hybrid functions. InUs.t.(λ) the bond
term is changed alchemically, i.e., it is a function ofλ. In
Ud.t.1(λ), the bond term does not depend onλ so that the end
states correspond to ideal gas molecules as inUs.t.(λ);
in_Ud.t.2(λ) the bonded terms are scaled, corresponding to ideal
gas atom end states (see section 2b of ref 10). For the chemical
transfer processes from the gas phase into “solution” (∆A1, ∆A2),
there is no difference between single topology and the two dual
topology methods as only the nonbonded interaction between
B2 and B3 of i and f, respectively, are scaled as a function of
the coupling parameter in all three hybrid potentials.

The free energy simulations are carried out with a slow-
growth, thermodynamic integration protocol; in all cases, the
system is equilibrated for 10000 steps (a time step of 1 fs was
used) atλ ) 0, then the coupling parameter is changed from 0
to 1 over the following 100 000 simulation steps. As the results
agree excellently with the reference results from numerical
integration of the partition function, only one simulation is
carried out for each path. The velocity of particle(s) B2 (B2i

and B2f in dual topology) are kept at an average temperature
of 300 K by a Nose´ thermostat,15 implemented in CHARMM
c24b1 by M. Watanabe. Separate thermostats for each of the
two atoms (B2i and B2f) are used in dual topology.

Additional calculations (sets 2 and 3) were carried out to
probe how much the presence of the nonbonded interaction alters
the harmonic oscillator term. In a second set of calculations
the free energy difference for changing the equilibrium bond
length in the presence of the nonbonded interaction between
B2 and B3 was computed for force constants of varying strength,
as well as for a rigid system. The comparison of the results

obtained using a flexible bond with several values of the force
constant to those for a rigid system addresses the question
whether these two approaches (flexible vs constrained bond
terms) lead to different results. These calculation were carried
out with both the single and dual topology (ideal gas molecule
end state) methods, and the free energy difference was also
calculated using Mathematica.13 Further, dual topology calcula-
tions in which the bond terms were scaled (ideal gas atom end
state) were carried out using Mathematica.13 In each run the
bond length was changed from 1.526 to 0.3 Å; the force constant
K and the van der Waals parameters (ε ) -0.175 kcal/mol,σ
) 3.905 Å) remain the same. The computations are repeated
with four force constantsK ) 1,000, 260, 80, 10, kcal/(mol
Å2) to illustrate the range of effects; clearly the value of 10
kcal/(mol Å2) is too small to be realistic for a covalent bond
though it might correspond to the effective force constant for a
hydrogen bond.

The calculation with a rigid bond removes the last degree of
freedom, i.e., the free energy difference reduces to

whereU is the potential energy function. The distance (rf or r i)
between particles B1 and B2 (atλ ) 0 or 1) fully determines
the system as the B1-B3 distance is fixed. There are, however,
two choices forri andrf. One possibility is to use the equilibrium
bond lengthro as the reference value for the constraint; in this
case rf(B1-B2) ) 0.3 Å and r i(B1-B2) ) 1.526 Å. An
alternative choice forrf andr i is to use the values forrf andr i

which give the minimum energy for the corresponding flexible
system. Free energy differences are calculated according to eq
2 for both choices ofr i and rf and compared to the result for
the corresponding flexible system.

Finally, we test the case where the equilibrium bond length
(1.526 Å) of the harmonic oscillator term, as well as the
nonbonded interaction (ε ) -0.175 kcal/mol,σ ) 3.905 Å)
between particles B2 and B3, are left unchanged while the force
constant is reduced to one-half of its original value (third set of
computations). Two initial values of the force constant,K )
250 andK ) 17 kcal/(mol Å2) are used. The same methods as
in the other cases (single topology and dual topology with ideal
gas molecule end state using simulation, dual topology with
ideal gas atom end state using Mathematica, and direct
computation of∆A using Mathematica13) are employed.

2b. Free Energy Difference of Solvation between Two
Hypothetical Diatomic Molecules.To verify the conclusions
derived from the simplified one-dimensional system, we study
an analogous three-dimensional diatomic molecule in water. As
the solute moves in three dimensions, it is possible to demon-
strate the role of Jacobian factors, which do not arise in the
one-dimensional case. The same system was used to study the
local path-dependence of free energy components; these results
will be presented in detail elsewhere (Boresch, S.; Karplus, M.
To be published). The bond length of the hypothetical diatomic
molecule was changed from 1 to 2 Å. All other parameters
(charges and van der Waals parameters of the solute and, in
the case of a flexible solute, the force constant for the bond
term) remained unchanged. The parameters of the solute were
force constant,K ) 300 kcal/(mol Å2); van der Waals
parameters,ε ) -0.08 kcal/mol,σ ) 2.06 Å, and charges,q )
(0.5e. The charges on the solute do not interact. The mass of
the solute atoms was set to 15 amu.

The alchemical transformation was realized in two ways:
calculations were (i) run with the PERT module of CHARMM
(single topology approach) and (ii) the BLOCK module of

∆A ) U(rf) - U(r i) (2)

Us.t.(λ) ) (1 - λ){Ui,bond(B1,B2)+ Ui,LJ(B2,B3)} +
λ{Uf,bond(B1,B2)+ Uf,LJ(B2,B3)} (1a)

Ud.t.1(λ) ) Ui,bond(B1,B2i) + Uf,bond(B1,B2f) +

(1 - λ)Ui,LJ(B2i,B3) + λUf,LJ(B2f,B3) (1b)

Ud.t.2(λ) ) (1 - λ)Ui,bond(B1,B2f) + λUf,bond(B1,B2f) +

(1 - λ)Ui,LJ(B2i,B3) + λUf,LJ(B2f,B3) (1c)

Free Energy Simulations. 2 J. Phys. Chem. A, Vol. 103, No. 1, 1999121



CHARMM (dual topology approach). The system is illustrated
in Figure 2, which shows initial (a) and final state (b), as well
as how the simulation was set up in the dual topology method
c. In single topology, a flexible, as well as a rigid, solute was
studied. Because of problems with keeping two flexible solutes
aligned with each other, the solutes used in the dual topology
calculations were not allowed to move, i.e., they were rigid.
Thermodynamic integration was used in all calculations. Nu-
merical integration of the〈∂U/∂λ〉λ ensemble averages was
carried out with the trapezoidal rule. An atom-based truncation
scheme with a shifted electrostatic potential (rc ) 7.5 Å) was
used; Lennard-Jones interactions were switched off between 6.5
and 7.5 Å. A dielectric constant of 1 was used. In the solution
calculations periodic boundary conditions with the minimum
image criterion were applied; they were carried out at constant
volume. SHAKE was always applied to the water molecules16

which were described by the CHARMM modified TIP3P
model.17 Additional details of the simulations are summarized
in Table 1.

To interpret the results from these simulations as a free energy
difference of solvation, a gas phase calculation is required, in
principle. In the dual topology approach without scaling (see
section 2b of the companion paper10), the bond terms do not
change, so there is no need for a gas phase calculation. In the
single topology method the only free energy contribution in the

gas phase is a Jacobian factor arising from the bond length
change (see section 2c of the companion paper10), and the
Jacobian factor was calculated analytically.18 However, we did
a gas phase simulation to estimate the accuracy and precision
of the free energy protocol for the flexible solute. It was set up
so that the Jacobian factor free energy contribution is not
included by removing the overall rotational and translational
degrees of freedom from the simulation; see also ref 18.

2c. Free Energy Difference of Solvation between Ethane
and Methanol. The free energy difference of solvation between
ethane and methanol has become a benchmark for free energy
simulation formalisms, as well as for the correctness of the
implementation of computer programs.19 Numerous simulations
for this system have been published (e.g., refs 20-22). Many
of these, using a variety of force fields and simulation protocols
that might be considered too short by present standards, gave
results (6.9( 0.1 kcal/mol20,21) in excellent agreement with the
experimental value (6.9 kcal/mol23). It was noted recently,
however, that the quantitative free energy difference of solvation
is more sensitive to the details of the parametrization than
thought earlier; in particular, the partial charges of the alkyl
group(s) appear to play an important role.24

Simulations of the transformation were performed with an
early version of the CHARMM 22 all-atom parameter set.25 Both
single and dual topology approaches were employed. Since the
hybrid solutes used in the two cases are not the same, we discuss
them separately.

Dual Topology Calculations.The BLOCK module of
CHARMM14 was employed for the simulations. When using
this module, atoms that are not of the same typeand/ordo not
have the same partial charge in the portion of the system that
is transformed are defined separately. The parameters and partial
charges used in the calculations are listed in Tables a-e in
Supporting Information. Only the three hydrogens of the
common methyl group in methanol and ethane are the same in
the two end states. Ideal gas molecule end states were used so
that the bonding parameters (bond stretching, bond angle, and

TABLE 1: Description of Simulations Carried out for the Diatomic Model System in Water

no. of runsa protocol no.λ-values details of protocolb

PERT (s.t.)c

gas phased 10 fw/10 bw windowing/TI 20 λ ) 0.025: 14000/2000
λ ) 0.075: 2000/2000
λ ) 0.975: 2000/2000

solution 1e 1 fw/1 bw windowing/TI 20 as for gas phase
solution 2f 1 fw/1 bw windowing/TI 20 as for gas phase

BLOCK (d.t.)g

solution 1h 1 fw windowing/TI 9 λ ) 0.1: 10000/5000
λ ) 0.2: 5000/5000
λ ) 0.9: 5000/5000

solution 2i 1 fw windowing/TI 3 per step For each step:
in 5 steps λ ) 0.1667: 4000/4000

λ ) 0.5: 4000/4000
λ ) 0.8333: 4000/4000

a Results reported in Table 4 are the average of the runs listed here. The forward (fw) direction is defined as 1f 2 Å and the backward (bw)
direction as 2f 1 Å. b The notation (λ ) x:m/n) means the following: At a given value ofλ ) x (fw or bw run) m simulation steps were used
for equilibration and discarded; during the followingn steps of dynamics, the ensemble average〈∂U/∂λ〉λ was accumulated.c The time-step in all
PERT simulations was 1 fs.d Flexible system. Degrees of freedom corresponding to overall rotation and translation of the system were removed,
so the Jacobian factor is not included in the results.18 e Flexible system. The harmonic oscillator with a bond length of 1 Å length was placed in
the center of a periodic box filled with 125 CHARMM modified TIP3 water molecules17 (box length of 15.5516 Å). Waters overlapping with the
solute were deleted; in all simulations 122 water molecules were present. The Nose´ constant temperature molecular dynamics algorithm15 was used
to keep the average temperature at 300 K.f Rigid system. The bond of the solute was kept rigid by SHAKE.16 The constraint correction was
calculated according to eq 29 of ref 10. All other details of the simulations are the same as for the flexible system.g The time-step in all BLOCK
simulations was 2 fs.h Two diatomic molecules, one with 1 Å, the other with 2 Å bond length, were defined on top of each other and centered
along thex-axis, cf. Figure 2c. The solute was fixed during the molecular dynamics simulations. A Berendsen thermostat was used for temperature
control. As in the PERT simulations, 122 water molecules were present.i The total change in bond length was broken up into five increments:
1-1.2 Å, 1.2-1.4 Å, etc. The individual free energy differences were added to obtain the final result.

Figure 2. The hypothetical diatomic model system. (a) Initial state,
(b) final state, and (c) the setup used in the dual topology simulations.
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Urey-Bradley terms) were not scaled as a function ofλ. Figure
3a depicts the hybrid solute used in the dual topology calcula-
tions. The simulation system is divided into three regions, which
we denote asenVironment(waters and H1, H2, and H3),reactant
(ethane part: C1E, C2, H4, H5, and H6) andproduct(methanol
part: C1M, OG, and HG1) region. Reactant and product portions
do not interact with each other during the simulation. The two
C1 carbons (C1M and C1E) were assigned the same coordinates
and were not allowed to move during the simulation. This may
affect the vibrational degrees of freedom, but if C1E and C1M
were free to move, there could be unphysical coupling between
the two halves of the system. For example, a displacement of
the ethane part that is caused by interaction with the solvent
could affect the methanol part, which should not feel this
particular interaction with solvent, and vice versa. However,
the effect is expected to be small. The hydrogens H1, H2, and
H3, which belong to the environment part, are “divalent”; i.e.,
each of them has bonds to C1E and to C1M. Since the bond
parameters are not scaled (only simulations with an ideal gas
molecule reference state were carried out), these hydrogens
would have effective bond strengths equal to twice the normal
value if the default parameters (cf. Table c in Supporting
Information) were used. To avoid this, the force constant was
divided by two for the bonds between H1, H2, H3, and C1E,
C1M, respectively, and the same was done for angles of the
type H1-C1E-H2, H1-C1M-H2, etc. There is an ambiguity
regarding the H1-C1M-OG, H1-C1E-C2, etc., angles as the
hydrogens should experience simultaneously a bond angle
potential corresponding to methanol and ethane; furthermore,
OG and C2 should experience the bond angle term for methanol
and ethane, respectively. Since this is not possible (at least within
BLOCK), the default parameters were used. A useful conse-
quence of these artificially strong angle terms is that the C1E-
C2 and C1M-OG bonds (and, therefore, reactant and product
part of the hybrid) are restrained to stay close to each other
throughout the simulation. The dihedral angle and 1-4 non-
bonded intramolecular terms were scaled by the coupling
parameter.

The simulations follow the alchemical paths in the thermo-
dynamic cycle used to compute a free energy difference of
solvation26 (see Figure 1 of the companion paper10); i.e.,∆∆Asolv

) ∆A4 - ∆A3, where ∆A3 and ∆A4 are the free energy
difference between ethane and methanol in the gas phase and
in water, respectively. Since there are intramolecular dihedral

angle and 1-4 nonbonded interactions which change when the
properties of the hybrid solute are changed from ethane to
methanol, the gas phase (∆A3) contributes to∆∆Asolv. The
technical details of the simulations are summarized in Table
2a.

SingleTopologyCalculations.ThePERTmoduleofCHARMM
was used for the single topology calculation; Figure 3b depicts
the hybrid molecule employed. Since the total number of atoms
must be conserved (see section 2b of the companion paper10),
dummy atoms are introduced; i.e., two hydrogen atoms of the
second methyl group in ethane (H5 and H6) were mutated into
dummy atoms (D5 and D6) in methanol. Dummy atoms did
not have nonbonded interactions with the rest of the system;
i.e., their van der Waals parameters and charges were set to
zero. The force constants of the dihedral terms to dummy atoms
were also set to zero so that only harmonic energy terms
connected the dummy atoms to the rest of the system (see
section 2b of the companion paper10). The remaining bonded
energy terms were maintained; i.e., the respective bond, bond
angle, and Urey-Bradley parameters were equal to the values
of their C-H counterparts. Two parametrizations for the bond
length to the dummy atoms were used: (i) The bond length
was the same as in the corresponding original bond (dummy
atom type D1, calculations PERT1) and (ii) the bond length
was one-fifth of this value (dummy atom type D2, calculations
PERT2). The second model is expected to reduce end-point
problems.6,27,28All intrasolute bonded and nonbonded interac-
tions were included in the free energy to evaluate the importance
of these terms. Free energy simulations were made also for a
system in which the bond lengths of the hybrid molecule were
constrained to their equilibrium value by SHAKE16 (PERT2C
calculations). The relationship between the single topology
calculations carried out is illustrated by the thermodynamic cycle
depicted in Figure 4. The initial state (ethane) is the same in
the PERT1, PERT2 and PERT2C calculations as no dummy
atoms are necessary for its representation. The parameters, which
are based on an early version of the new CHARMM all-atom
force field,25 are listed in Tables a-e in Supporting Informa-
tion.

In all cases a gas phase calculation was required to complete
the thermodynamic cycle (Figure 4). The degrees of freedom
corresponding to overall rotation and translation of the molecule
were not removed in the gas phase calculations so that the full
Jacobian factor was included there, as well as in solution.18 In
the case of a flexible molecule, the gas phase free energy
differences can be estimated without MD simulations by use
of normal mode calculations. This provides a useful check on
the accuracy of the gas phase simulations. The two end point
structures (λ ) 0 andλ ) 1) were minimized, and a normal
coordinate analysis was performed. The resulting normal-mode
frequencies were used to estimate the (classical) vibrational free
energies of ethane and methanol (including the dummy atoms).
If the corresponding particles in the initial and final state have
the same mass, the contribution of the kinetic energy cancels
out of the vibrational free energy difference; alternatively, the
configurational contribution to the free energy difference can
be calculated with the techniques developed in ref 29. Since in
the present case masses were not changed, the entire vibrational
free energy is used in calculating∆∆A. The difference in energy
between the minimized structures of the initial and final state,
i.e., ethane and methanol, has to be added to this vibrational
free energy difference, as well as a term accounting for the
change in moment of inertia,∆Am.o.i ) -kT ln(|I f|/[I i|)1/2, where
|I | is the determinant of the moment of inertia tensor.18 For a

(a)

(b)

Figure 3. Ethane/methanol simulation. (a) The hybrid solute used in
the dual topology simulations. (b) The hybrid solute used in the single
topology simulations.
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more detailed discussion, see section 3b of ref 18, in particular
eqs 14 and 15.

In both the gas phase and solution simulations, a slow-growth
protocol was employed. Slow-growth simulations have been
criticized because, in principle, they do not sample equilibrium
configurations at any instantaneous value ofλ.30 However, it
has been shown that the results from a slow-growth calculation
are upper and lower bounds to the free energy difference, which
justifies the use of this protocol if the results are interpreted
accordingly.31 Furthermore, in solution the range 0< λ <1 was
broken up into 10 steps. While a slow-growth protocol was used
to calculate the free energy difference for each of these steps,
the system was allowed to reequilibrate between steps. The
overall results from the forward and backward run are lower
and upper bounds to the free energy difference, respectively.
Moreover, the upper and lower bounds for each of the
subintervals was also estimated from the simulations.31 Ad-
ditional technical details are summarized in Table 2b.

Figure 4. Thermodynamic cycles illustrating the single topology
calculations for the free energy difference of solvation between ethane
and methanol. The initial state (ethane) is the same for PERT1 and
PERT2; the differences between the two protocols is discussed in the
text. The PERT2 calculations were carried out for a flexible solute
(PERT2), as well as for a solute where bond lengths were constrained
to their parameter value (PERT2C); the symbol PERT2(C) indi-
cates that this part of the diagram applies to both PERT2 and
PERT2C.

TABLE 2: Summary of Dual and Single Topology Simulations for the Ethane/Methanol Systema

(a) Single Topology

no. of runsb protocol
no. of

λ-values used
details of protocol pertinent to

free energy simulationsc

gas phase 3 fw/3 bw windowing/TI 10 λ ) 0.05: 20 000/10 000
λ ) 0.15: 10 000/10 000
λ ) 0.95: 10 000/10 000

solutiond 2 fw windowing/TI 16 λ ) 0.05: 5 000/60 000
λ ) 0.15: 5000/60 000
λ ) 0.25: 5 000/40 000
λ ) 0.75: 5 000/40 000
λ ) 0.8125: 10 000/40 000
λ ) 0.8375: 10 000/40 000
λ ) 0.9875: 10 000/40 000

(b) Single Topologye

no. of runsf protocol details of protocolg thermostat

gas phase
PERT1 10 fw/10 bw slow growth 10 000/100 000 multiple Nose´h

PERT2 slow growth 20 000/200 000 multiple Nose´h

PERT2C slow growth 20 000/200 000 Langevini

solutionj

PERT1 1 fw/1 bw stepwise slow growthk 10 000/20 000 (per step)l Nosé(ref 15)
PERT2 1 fw/1 bw stepwise slow growthk 10 000/20 000 (per step)l Nosé(ref 15)
PERT2Cm 1 fw/1 bw stepwise slow growthk 10 000/20 000 (per step)l Nosé(ref 15)

a All calculations were performed with a slightly modified form of the BLOCK module in the CHARMM program14 in which bond, bond angle
and Urey-Bradley terms were not scaled as a function ofλ. Numerical integration of the〈∂U/∂λ〉λ ensemble averages was carried out with the
trapezoidal rule. The mass of all solute hydrogens was set to 10 amu which improves convergence of the gas phase simulations. The temperature
of the system was kept at an average value of 300 K with a Nose´ thermostat.15 An atom-based truncation scheme with a shifted electrostatic
potential (rc ) 7.5 Å) was used; Lennard-Jones interactions were switched off between 6.5 and 7.5 Å. Nonbonded interactions were computed
including 1-4 pairs; a dielectric constantε ) 1 was used.b Results reported in Table 5 are the average of the number of runs listed here. The
forward (fw) direction is defined as ethanef methanol; the backward (bw) direction as methanolf ethane.c The notation (λ ) x:m/n) means the
following: At a given value ofλ (fw or bw run) m steps of simulation were used for equilibration and discarded; during the following n steps of
dynamics, configurations were saved every 5 steps and used to calculate〈∂U/∂λ〉λ in a postprocessing step.d The hybrid solute was placed in a
preequilibrated box of 125 CHARMM modified TIP3P waters17 (boxlength) 15.56 Å). Waters overlapping with the solute were deleted; in all
simulations, 122 water molecules were present. SHAKE16 was applied to the TIP3P water molecules. All simulations were carried out at constant
volume.e All calculations were carried out with the PERT module of CHARMM.14 The mass of all solute hydrogens was set to 10 amu. The
temperature of the system was kept at an average value of 300 K; the thermostats used are listed in the table. An atom-based truncation scheme
with a shifted electrostatic potential (rc ) 7.5 Å) was used; Lennard-Jones interactions were switched off between 6.5 and 7.5 Å. 1-4 nonbonded
interactions were included; a dielectric constantε ) 1 was used.f Results reported in Tables 6a-c are the average of the runs listed here. The
forward (fw) direction is defined as ethanef methanol; the backward direction (bw) as methanolf ethane.g The notationm/n means that the
system was equilibrated form steps at the initial value ofλ; the alchemical mutation from initial to final state was carried out over the following
n steps using the slow-growth method.〈∂U/∂λ〉λ was calculated on the fly and summed up to give∆A for the step.h A separate Nose´ heat bath was
coupled to each atom of the hybrid solute.15 i Temperature was controlled by Langevin dynamics; a friction coefficient of 50 ps-1 was used.j The
hybrid solute was placed in a pre-equilibrated box of 125 CHARMM modified TIP3P waters17 (box length) 15.56 Å). Waters overlapping with
the solute were deleted; in all simulations 122 water molecules were present. SHAKE was applied to the water molecules.16 All simulations were
carried out at constant volume.k The interval 0< λ < 1 was broken into 10 steps: 0< λ < 0.1, 0.1,λ < 0.2, etc. For each of these steps, the
system was (re)equilibrated for 10000 steps at the initialλ value; thenλ was changed from initial to final value using the slow-growth protocol.l At
the respective first step of a fw/bw run (λ ) 0 or 1), 20000 instead of 10000 steps were used for equilibration.m In the PERT2C simulations
constraints were applied to all bond terms of the solute. The resulting constraint correction to the free energy was calculated according to eq 29 of
the companion paper.10
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3. Results

3a. One-Dimensional Model System.The results corre-
sponding to the paths depicted in Figure 1 are listed in Table
3a. Additional calculations aimed specifically at identifying
coupling between nonbonded and bonded interactions are
summarized in Tables 3b and c. For all transformations (Tables
3a-c), the free energy differences obtained from molecular
dynamics simulations using either a single or dual topology
methodology without scaling of the bond term (ideal gas
molecule end state) are compared to those obtained from the
numerical integration of the partition function. Furthermore, dual
topology calculations with scaling of the bond term as described
in section 2d of the companion paper10 and section 2a were
carried out using Mathematica.13 No error bars are given for
the simulations, as only one simulation was carried out for each
case and method. However, the good agreement between the
results obtained with the various methods (numerical integration
of the partition function, single and dual topology computations)
is indicative of the high accuracy and precision of the results.

The results summarized in Table 3a correspond to the
thermodynamic cycle depicted in Figure 1 which can be

interpreted as defining a free energy difference of solvation,
∆∆Asolv ) ∆A4 - ∆A3 ) ∆A2 - ∆A1 (see section 2a). To
compare the results of the concerted path∆A5 with alchemical
(∆A3 and∆A4) and chemical (∆A1 and∆A2) paths, one has to
add or subtract a contribution (e.g.,∆A5 ) -∆A1 + ∆A3). The
free energy difference of “solvation” computed along chemical
and alchemical paths agrees for all three computational methods
(single topology, dual topology with (d.t.2) and without scaling
of the bond term (d.t.1). However, there are systematic differ-
ences for the single free energy differences in the thermody-
namic cycle, in particular for the alchemical paths∆A3 and∆A4,
as well as for the concerted path∆A5.

In the single topology calculations, the free energy differences
consist solely of a van der Waals contribution along the chemical
paths and a bond contribution along the alchemical paths. Since
only one component of the potential energy function is changed
along each of these paths (the van der Waals interaction along
the chemical paths and the bond term along the alchemical
paths), no decomposition is required. The free energy difference
for the additional path (∆A5), in which all parameters describing
the system (force constant, equilibrium bond length, and van

TABLE 3: (a) Results for the One-Dimensional Atom, Diatomic Model System along the Paths Depicted in Figure 1.a (b) Free
Energy Changes for a Change in Bond Length in the One-Dimensional Atom, Diatomic Model System as a Function of the
Force Constant of the Bond.r (c) Free Energy Changes as a Function of the Force Constant Calculated with the Different
Methodss

(a) Results for the System along the Paths Depicted in Figure 1

single topology dual topology (d.t.1)b dual topology (d.t.2)c

total bond vdW total bond vdW total bond vdW
exactd

total

∆A1 1.40 1.40 1.40 1.40 1.40 1.40 1.40
∆A2 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.15
∆∆A ) ∆A2 - ∆A1 -1.52 -1.52 -1.52 -1.52 -1.52 -1.52 -1.55
∆A3 -0.35 -0.35 0.00 0.00 -0.35 -0.35 -0.35e

∆A4 -1.92 -1.92 -1.56 -1.56 -1.87 -0.32 -1.55 -1.90e

∆∆A ) ∆A4 - ∆A3 -1.57 -1.57 -1.56 -1.56 -1.52 0.03 -1.55 -1.55
∆A5 ) -∆A1 + ∆A3 -1.75 -1.40 -0.35 -1.41 -1.41 -1.72 -0.32 -1.40 -1.75e

) ∆A4 - ∆A2
f

(b) Free Energy Changes for a Change in Bond Length

∆Ad.t.2
j

K ∆Ag ∆As.t.
h ∆Ad.t.1

i total bond vdW ∆Acons
k ∆Acons

l roi/rof in Åm

1000.0 -1.58 -1.59 -1.58 -1.56 0.02 -1.58 -1.59 -1.58 1.522/0.300
260.0 -1.56 -1.56 -1.56 1.52 0.03 -1.55 -1.59 -1.54 1.513/0.300
80.0 -1.49 -1.49 -1.49 -1.42 0.04 -1.46 -1.59 -1.45 1.487/0.301
10.0 -1.16 -1.14 -1.13 -1.03 -0.13 -0.90 -1.59 -0.99 1.352/0.305

(c) Free Energy Changes as a Function of the Force Constant

∆Ad.t.2
p

K ∆As.t.
n ∆Ad.t.1

o total bond vdW ∆Aq

250f 125 -0.24 -0.03 -0.25 -0.21 -0.04 -0.24
17 f 8.5 -0.36 -0.14 -0.40 -0.16 -0.23 -0.36

a All values in kcal/mol.K (force constant) in kcal/(mol Å2). b Dual topology simulations in which bond terms were not scaled by coupling
parameterλ. c Dual topology simulations in which bond terms were scaled byλ up to a limiting value as described in section 2d of the companion
paper10; computations carried out using Mathematica13 as described in section 2a.d Obtained by evaluating the configuration integral numerically
using Mathematica.13 e Compare only with single topology or d.t.2 simulations as d.t.1 does not include vibrational free energy contributions (see
text). f See text (section 3a).g Calculated by direct numerical integration of the partition function of initial and final state using Mathematica.13

h Simulation results using single topology,∆A ) ∆Abond. i Simulation results obtained using dual topology without scaling of bond term,∆A )
∆AvdW. j Simulation results obtained using dual topology; bond terms were scaled to limiting value ofλ as described in section 2d of the companion
paper10; computations were carried out using Mathematica13 as described in section 2a.k Analytical result for a constrained bond using the parameter
value of the bond length to calculate the nonbonded interaction; in this case∆A ) U(rB1-B2 ) 0.3 Å) - U(rB1-B2 ) 1.526 Å). l Analytical result
for a constrained bond assuming that the bond length corresponds to the minimum energy at the respective end point (cf. text).m Bond length
corresponding to the minimum energy for the flexible system in the initial and final state, respectively.n Single topology simulation result;∆A )
∆Abond. o Dual topology simulation result in which the bond term was not scaled byλ; ∆A ) ∆AvdW. p Dual topology simulation result in which the
bond term was scaled to a limiting value ofλ as described in section 2d of ref 10 computations were carried out using Mathematica13 as described
in section 2a. Free energy components are listed explicitly.q Calculated by direct numerical integration of the partition function of initial and final
state using Mathematica.13 r The bond lengthr is changed from 1.526 to 0.3 Å. The case of a flexible bond term is compared with two ways of
calculating the change in free energy for a rigid ()constrained) bond.sAll free energy differences are in kcal/mol.
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der Waals parametersσ and ε) were changed in a linear
concerted process, consists of both bond and van der Waals
components, which are different as they must be, from the
components found for analogous changes in the potential energy
along the chemical and alchemical paths. The free energy
differences for the chemical paths (∆A1 and∆A2), as well as
the nonbonded free energy component on which it is projected,
is the same in all three methods (s.t., d.t.1, and d.t.2). This is in
accord with the considerations of section 2e of the companion
paper10 and reflects the fact that along the chemical paths the
three methods study identical processes (the transfer of a
molecule from the gas phase into solution). For the alchemical
paths, two cases have to be distinguished in dual topology. If
the bond potential energy term is not scaled (d.t.1), one finds
∆A3,s.t. * ∆A3,d.t.1, ∆A4,s.t. * ∆A4,d.t1., and, similarly,∆A5,s.t. *
∆A5,d.t.1. Only van der Waals components are obtained; the
alchemical gas phase free energy difference (∆A3) is zero, and
∆A4,d.t.1 ) ∆∆Asolv.. If the bond term is scaled (d.t.2); i.e., the
initial bond is broken and the final bond is formed, there is a
bonded contribution along the alchemical paths, and the total
free energy differences (∆A3 and∆A4) are the same as in the
single topology calculation. However, the respective bond and
van der Waals components for∆A4 and ∆A5 obtained in the
s.t. and d.t.2 computations differ.

The reason for the difference in the results obtained for the
alchemical paths is that different initial and final states are
employed in the three methods. In the single topology calcula-
tions (for alchemical paths), molecule B1-B2i is changed into
B1-B2f, with a corresponding, nonzero free energy difference
∆A3,s.t. in the gas phase. Both∆A3,s.t. and ∆A4,s.t. contain a
vibrational contribution due to the change in force constant. In
the dual topology calculations, where both molecules are present
at all times, the results depend on the treatment of the bond
term. If the bonds are not scaled (d.t.1), the hybrid molecule
B1-B2i/B1-B2f remains the same in the gas phase and so
∆A3,d.t.1 ) 0. Similarly, in the calculation of the free energy
difference in solution, the intramolecular energy terms are not
changed; therefore, the free energy difference between the two
molecules themselves is not included. In the d.t.1 method, the
free energy difference caused by the change in intramolecular
energy terms (equilibrium bond length and force constant) are
omitted. This contrasts with the d.t.2 method, where the bond
terms are scaled to a limiting value of the coupling parameter
(see section 2d of the companion paper10) so that the vibrational
contribution to the free energy difference is included. The overall
results for ∆A3, ∆A4, and ∆A5 agree with those of single
topology method, in contrast to those from d.t.1, but different
free energy components are obtained.

The comparison of the free energy components obtained for
∆A3 and∆A4 by single topology and d.t.2 calculations makes
clear the physical origin of the bond free energy components
found in single topology calculations; see also the theoretical
discussion in section 2c of ref 10. The gas phase free energy
difference∆A3 is due to a change in vibrational frequency. Since
the force constant of the bond term is different, there is a
vibrational bond contribution. As this system is restricted to
one dimension, there is no Jacobian factor contribution due to
the change in bond length.18 Both single topology and d.t.2 give
the same free energy component for∆A3. The free energy
difference in solution∆A4 contains the same vibrational
contribution as the gas phase, but since the nonbonded interac-
tion with the third particle changes when the bond length
between B1 and B2 is altered, there is also a potential-of-mean-
force-type contribution. This is evident from a comparison of

s.t. and d.t.2 free energy components: While∆A4,s.t. is equal to
the bond free energy component,∆A4,d.t.2 consists of a bond
component of about equal magnitude to that obtained in∆A3,d.t.2

plus a nonbonded component. The pmf-type free energy
contribution appears as a nonbonded free energy component in
dual topology. The same conclusion can also be deduced from
a comparison of the single topology and the d.t.1 result. As
discussed,∆A4,d.t.1does not contain the (vibrational) free energy
difference between B1-B2i and B1-B2f. From Table 3a we
find ∆A4,d.t.1 ) -1.56 kcal/mol, which originates from the
change in nonbonded interactions of the solute B1-B2 with
the third particle B3. Upon subtracting∆A4,d.t.1 from ∆A4,s.t.,
one finds a difference of-0.36 kcal/mol, which must be caused
by vibrational contributions. This is practically identical to the
bond component obtained with d.t.2 (-0.32 kcal/mol). An
analogous analysis can be made for the components of∆A5,d.t.2,
where there is a vibrational bond contribution of-0.35 kcal/
mol.

The free energy differences of solvation∆∆Asolv calculated
with the three different methods (s.t., d.t.1, and d.t.2) are in
excellent agreement. Since single topology and dual topology
with scaling of bonded terms (d.t.2) include all contributions
from the change in the bond term, this agreement for∆∆Asolv

is expected for simulations that have converged (s.t.) or
computations that avoid convergence problems (d.t.2). However,
the individual free energy differences in d.t.1 omit the vibrational
contribution. Thus, it is important to confirm that no contribution
to the physically meaningful quantity∆∆Asolv is omitted for
this case (see also section 2e of the companion paper10). Along
the chemical paths, any influence of the nonbonded terms on
the bonded terms (e.g., change in equilibrium geometry) shows
up indirectly in the nonbonded free energy components. The
same is true in dual topology simulations that do not scale
bonded terms by the coupling parameter. The Boltzmann
distribution used in the solution calculation (∆A4,d.t.1) includes
solvent induced changes in equilibrium geometry or vibrational
behavior and, therefore, any net contribution to the free energy
difference of solvation. This makes clear that, despite the
different realizations of the alchemical paths (∆A3 and ∆A4),
noneof the three approaches omits a contribution that is relevant
to ∆∆Asolv. Since the free energy is a state function, this result
is to be expected. Nevertheless, we emphasize this finding and
its confirmation by the results of the model calculations. It makes
clear that one is free to choose the methodology that leads to
the best behavior of the simulation and provides the most insight
into the meaning of the results.

For the thermodynamic cycle depicted in Figure 1,∆∆Asolv

is caused almost exclusively by the change in nonbonded
interactions between the solute B1-B2i/B1-B2f and the solvent
B3. For the chosen interaction parameters, any effects of
coupling between the bond term of the solute and the nonbonded
interactions are smaller the precision of the calculated results.

To determine whether nonbonded interactions can have a
measurable effect on the vibrational contribution, we consider
first the results of calculations in which the bond length was
changed from 1.526 to 0.3 Å as before, but neither the force
constant nor the van der Waals parameters were altered (Table
3b). This free energy difference was calculated for four different
force constants (K ) 1,000, 260, 80, and 10 kcal/(mol Å2)),
ranging from an atypically strong force constant (K ) 1000
kcal/(mol Å2)) to one that is atypically weak (K ) 10 kcal/
(mol Å2)) for a bond (or bond angle) term. In the absence of
external forces, the free energy difference is zero as the force
constant is not changed (eq 19 of the companion paper10). If
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there were no influence of the nonbonded interaction on the
harmonic oscillator term (vibrational degree of freedom), all
four simulations would give the same result. For the weakest
force constant (K ) 10 kcal/(mol Å2)) compared with the
strongest force constant (K ) 1000 kcal/(mol Å2)) the difference
is 0.42 kcal/mol, about one-third of the total free energy change.
Thus, for the low force constant case the effect is important.
However, for more realistic force constants, the differences in
the results are quite small and would be impossible to discern
in a typical free energy simulation with error bars of several
tenths of a kcal/mole and more. The results for the two force
constants used in the simulations summarized in Table 3a (260
and 80 kcal/(mol Å2)) differ by 0.07 kcal/mol, a negligible
amount.

Table 3b also includes the free energy differences for these
four processes calculated under the assumption of a rigid bond.
As described in the Methods section, two choices for the
reference bond length are compared. The first approach, which
uses the parameter values of the bonds as the target value for
the constraint, gives the same result (-1.59 kcal/mol) in all four
cases, as it should. The error, relative to a flexible bond, is
significant only for the weakest bond (K ) 10 kcal/(mole Å2)).
Use of reference values for the bond length that correspond to
the minimum energy geometry of the flexible system improves
the results, although the free energy difference for the weakest
bond is still in error by a significant amount. This indicates
that in most cases the influence of nonbonded interaction on
the bond term will be small. Nevertheless, it is important to be
aware that such an effect exists. Moreover, the van der Waals
parameters chosen (section 2a) result in a repulsion of ap-
proximately 2.5 kT between particles 2 and 3 for the 1.526 Å
bond length (the interaction is negligible for the 0.3 Å bond
length). When the calculations were repeated with a stronger
nonbonded interaction (approximately 10 kT between particles
2 and 3 for the 1.526 Å bond length), the effects of coupling
between nonbonded (pmf-type) and vibrational contributions to
the free energy difference increase significantly (results not
shown).

Table 3b also includes the bond lengths corresponding to the
minimum energy in initial and final state, respectively, which
were used to compute the (free) energy difference according to
eq 2. These can serve as a measure how strongly the nonbonded
interaction influences the average geometry of the bond. The
deviations from the equilibrium geometry are noticeable, even
for “normal” force constants, such as 80 and 260 kcal/(mole
Å2), and the fairly weak van der Waals interaction chosen. This
large effect is due in part to the one-dimensional arrangement
of the model system, in which neither particle 2 nor particle 3
can avoid the unfavorable interaction.

The free energy differences for a change in force constant in
the presence of nonbonded interactions are summarized in Table
3c. As the bond length parameter is not changed, there can only
be a vibrational contribution and a coupling due to the van der
Waals interaction between B2 and B3. The vibrational contribu-
tion of -0.21 kcal/(mol Å2) is the same since the force constant
changes by a factor of 2 in both cases and can be calculated
analytically according to eq 19 of the companion paper.10 Since
the d.t.1 calculations omit vibrational free energy contributions,
the d.t.1 results in Table 3c differ by exactly this value from
the single topology and d.t.2 results.

In addition to the Mathematica results shown in Table 3c,
the d.t.2 calculations (dual topology with scaling of bond terms
to a limiting value as described in section 2d of the companion
paper10) were also attempted with simulations. The results are

generally less accurate than those with simulations based on
single topology or d.t.1. A combination of reasons is responsible
for this. First, we observed difficulties in achieving correct
thermal equilibration for the two parts of the system although
separate thermostats were used. Related problems were noticed
by Wang and Hermans,28 who coupled individual parts of a
system to a Langevin heat bath to improve convergence of
results. Also, the results were rather noisy so that the fits
introduced errors in the overall result. Finally, in all systems
studied (Tables 3a-c) there appear to be small systematic
deviations between the d.t.2 Mathematica results and the
analytical free energy differences. The d.t.2 algorithm makes
use of a criterion for when a bond is broken (eq 40 of the
companion paper10). At this point (λ ) ε), the “ideal gas”
particles should not experience any nonbonded interactions;
nevertheless, atλ ) ε a weak van der Waals interaction can
still be present. This could be corrected for by using a pair of
coupling parameters; To describe the formation of a bond, the
endpoints{λvdW ) 0, λbond) ε} f {λvdW ) 1, λbond) 1} should
be used.

The coupling effect when the force constant is altered
originates from the (small) change in average bond length of
the solute induced by nonbonded interaction with B3. This
deviation becomes larger as the force constant becomes weaker,
which is clearly reflected in the results (Table 3c). This indicates
that the coupling should be included in the free energy
methodology for alchemical changes in bond and bond angle
terms with (very) low force constants in the presence of strong
nonbonded interactions with the rest of the system. Significant
coupling effects between intramolecular bond(ed) and intermo-
lecular energy terms are evident in spectroscopic and theoretical
studies.32 This indicates that the form of the potential (e.g.,
representing bonds as harmonic rather than Morse oscillators)
used in typical MM force fields14,33,34 is not appropriate for
including such effects.32

The calculations reported here, particular the results for the
thermodynamic cycle depicted in Figure 1, make clear that single
and dual topology methods utilize different end states to
represent the alchemical paths usually followed in free energy
simulations. In particular for dual topology simulations where
bonded energy terms do not depend on the coupling parameter,
different alchemical free energy differences are obtained for
individual paths. This is clear from Table 3c where the results
obtained with s.t. and d.t.2 agree well;∆Ad.t.1, on the other hand,
differs systematically by the free energy difference for reducing
the force constant by one-half in the absence of nonbonded
interactions (0.21 kcal/mol). If this missing vibrational free
energy contribution is added, the same results as in the s.t. and
d.t.2 case are obtained. However, the results combined with the
theoretical considerations of section 2e of the companion paper10

demonstrate that all three methods correctly include coupling
between vibrational and Jacobian factor contributions on one
hand and nonbonded (e.g., solute-solvent) interactions on the
other hand. Again, this is reflected in Table 3c, which shows
that in the absence of nonbonded interactions, the free energy
difference is a vibrational contribution resulting from the
reduction of the force constant to one-half its original value. If
the model calculation were expanded into a thermodynamic
cycle, i.e., the computation of the “free energy difference of
solvation” with the gas phase corresponding to the absence of
nonbonded interactions, a gas phase free energy difference of
0.21 kcal/mol would be obtained in s.t. and d.t.2 (cf. footnote
s in Table 3c) compared to zero for d.t.1 (since vibrational
contributions are not included in this methodology). Therefore,
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identical double free energy differences would result for the
three methods, demonstrating numerically that all three are
suited for the study of double free energy differences defined
by a thermodynamic cycle. In particular, coupling contributions
are correctly included by all methods. The hypothetical double
free energy difference that one can deduce from the results listed
in Table 3c as just discussed is essentially such a coupling term;
i.e., the vibrational contribution is the same in both cases; the
van der Waals parameters themselves remain unchanged; and
yet different values are obtained for the high and for the low
values of the force constant. Although the vibrational contribu-
tion is omitted in the d.t.1 calculations, the same overall result
(double free energy difference) is obtained; i.e., the coupling
contribution is taken into account.

3b. Diatomic Model System. Table 4 lists the results
obtained from simulations of a bond length change for a
diatomic molecule in water with a charge of(0.5e on each
atom. As was the case for the one-dimensional model systems
(section 3a), we are interested in thephysical origin of the
computed free energy difference. Since this system is unre-
stricted; i.e., it can move in all three spatial dimensions, the
Jacobian factor contributions, which were absent in the one-
dimensional model systems, have to be taken into account. The
details of the simulations are described in Table 1 and section
2b. The single topology (PERT) simulations labeled run 1 and
run 2 differ only in the treatment of the bond term of the
solute: In run 1 it is a flexible harmonic oscillator term; in run
2 it is constrained. In both dual topology simulations, a rigid
solute is used (cf. section 2b and Table 1), but in run 1 the
bond length is changed in one step whereas there are intermedi-
ate steps in run 2. In accord with the analysis of section 2c and
e of the companion paper,10 the free energy change can be seen
to be projected on the bond term in the single topology
calculation; i.e., there is no van der Waals or electrostatic
contribution, and on the nonbonded energy terms (van der Waals
and electrostatic) in the dual topology calculation (i.e., there is
no bond contribution). The meaning of the free energy

components listed in Table 4 is discussed in detail below. The
single and dual topology results, with the latter determined by
two different protocols, are in good agreement. This indicates
that the error in these calculations is low.

As for the one-dimensional model (section 3a) and as
described in the Theory section of the companion paper,10

several contributions to the apparent bond free energy compo-
nent (which for this simple model is equal to the full free energy
difference) have to be distinguished in the single topology result.
No vibrational contribution to the free energy difference is
expected, as only the bond length (and not the force constant)
is changed. Gas phase simulations using the relatively short
protocol described in Table 1 yield∆Agas) -0.06( 0.02 kcal/
mol, which is included in the double free energy difference∆∆A
in Table 4. This vibrational gas phase contribution, which is
close to the theoretical value of zero, indicates that the protocol
used is sufficient to describe the change in bond free energy
(vibrational contribution) with a computational error of less than
0.1 kcal/mol. It is likely that the same accuracy is obtained in
the solution simulation. The overall error for the single topology
solution calculations was found to be 0.2 kcal/mol (Table 4)
on the basis of standard deviation of the average results of the
forward and backward runs. Since this is a three-dimensional
system and the diatomic molecule can rotate freely in solution
and in the gas phase, there is a Jacobian factor contribution
due to the change in bond length18,28 of -2kBT ln 2 ) -0.83
kcal/mol. In the gas phase result listed in Table 5 this analytical
result is added to the calculated value of-0.06 kcal/mol (see
above) because overall translation and rotation are removed in
the calculation. In the solution calculations, the Jacobian factor
contribution is automatically accounted for in the free energy
simulation.18

The major component of the free energy difference in solution
∆Asolu as obtained by the single topology methodology, is a
pmf-type contribution. It reflects the change in nonbonded
interactions as a result of the change in the size and, hence, the
dipole moment of the solute. Since none of the nonbonded

TABLE 4: Results of Free Energy Simulations for the Diatomic Molecule in Watera

single topology ∆Agas
b ∆Asolu ∆Abond

c ∆AvdW ∆Aelec ∆∆Ad

run 1 -0.89(0.02) -6.7(0.2) -6.7(0.2) -5.8(0.2)
run 2 -0.89(0.02) -6.9(0.2) -6.9(0.2) -6.0(0.2)

dual topologye

run 1 -5.8 0.0 3.4 -9.2 -5.8
run 2 -6.0 0.0 3.2 -9.2 -6.0

a See section 2b for the methods used. The bond length is changed from 1 to 2 Å; all other interaction parameters remain the same. Free energy
differences are in kcal/mol.b ∆Agas is the same for run 1 and run 2, and it is the sum of the values obtained separately for the Jacobian factor and
the vibrational contribution. Theoretically, the only contribution is from the change in Jacobian factor, which was calculated analytically (eq 32)
of the companion paper10; i.e.,∆AJ ) -2kBT ln 2 ) -0.83 kcal/mol. Since the force constant of the solute is not changed, no vibrational contribution
is expected; however, in actual simulations, a value of-0.06( 0.02 kcal/mol was found in quite good agreement with the theoretical result (cf.
text). c Bond contribution for run 1, constraint correction for run 2.d For the single topology calculations,∆∆A ) ∆Asolu - ∆∆Agas, whereas for the
dual topology case∆∆A ) ∆Asolu. e No gas phase calculation was carried out for the dual topology simulations (see text).

TABLE 5: Results of the Dual Topology Simulations (BLOCK) for the Free Energy Difference of Solvation between Ethane
and Methanola

∆ABLOCK,gas ∆ABLOCK,solu ∆∆ABLOCK,solv ∆∆A*BLOCK,solv
b

total 5.3(0.1) -3.4(0.4) -8.7(0.5) -8.5(0.4)
contributions

dihedral -0.4(0.1) -0.5(0.1) -0.1(0.2)
VdW 0.1(0.0) -2.2(0.2) -2.3(0.2) -2.2(0.2)
electrostatic 5.6(0.0) -0.7(0.2) -6.3(0.2) -6.3(0.2)

a All free energy differences correspond to the transformation from ethane to methanol and are given in kcal/mol. The numbers in parentheses
are the standard deviations obtained from averaging over the simulations. Since an ideal gas molecule end state was used in the dual topology
simulations, there are no bond and bond angle free energy components and vibrational and Jacobian factor contributions are missing in both the gas
phase and the solution calculation.b Free energy difference of solvation obtained with the neglect of the gas phase and intrasolute interactions
(self-terms) in the solution calculation (cf. text).
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parameters are altered, no explicit nonbonded free energy
components are obtained in the single topology calculation.
Table 4 contains single topology results from a calculation using
a flexible bond (run 1) and one where the bond of the solute is
constrained (run 2). The difference between the two results (0.2
kcal/mol) could reflect coupling between the vibrational degree
of freedom and the solute-solvent interactions (cf. the analogous
results for the one-dimensional case in Table 3b). However, as
the statistical error of the calculation is of the same magnitude,
i.e., 0.2 kcal/mol, it is not certain that this is the origin of the
difference.

In both dual topology simulations, the solute is held fixed.
This eliminates the need for a gas phase simulation, and there
is no Jacobian factor contribution in the solution simulations;
in fact, ∆Asolu equals the double free energy difference of
solvation∆∆A. The dual topology calculations make use of a
path in which molecule 1 is desolvated and molecule 2 is
solvated simultaneously and reflect how the solute-solvent
interaction changes as the bond length of the solute is increased
or decreased. There is a stabilizing electrostatic interaction (-9.2
kcal/mol) with water due to the increase in bond length (and
dipole moment) which is partially offset by a destabilizing van
der Waals contribution (3.3 kcal/mol) due to the larger size of
the solute. These two opposing contributions are analogous to
those observed in the free energy difference of solvation between
Br- and Cl-.35

The above results demonstrate that the solvation free energy
difference of approximately-6 kcal/mol is the result of the
increase in the dipole moment of the solute when the bond length
changes from 1 to 2 Å. Comparison of the single and dual
topology methods is useful for a better understanding of the
physical origin of the free energy change. Since the charges of
the solute did not interact, there is no intramolecular nonbonded
contribution. The change of bond length in the gas phase results
in a Jacobian factor contribution, provided the molecule is free
(see section 2c of the companion paper10). In solution, the single
topology methodology leads to a large pmf-type contribution.
Its physical origin is made explicit by comparison with the dual
topology calculations, which show that the change in bond
length alters both the van der Waals and electrostatic interaction
with the solvent.

3c. Ethane to Methanol.To further illustrate the analysis
of contributions of bonded terms to free energy changes, we
consider the solvent effect on the ethane to methanol transfor-
mation, which is a realistic system that has been simulated as
a test case by several other groups.20-22 We first describe
separately the dual and single topology results and then compare
the components obtained with the two methodologies to obtain
a clearer understanding of their significance. The average free
energy difference of solvation∆∆Asolv between ethane and
methanol found with the various protocols discussed below
(Tables 5-7) is -8.7 ( 0.2 kcal/mol. This result is rather far
from the experimental value (-6.9 kcal/mol),23 as well as from
most calculations reported to date.20-22 Since elaborate protocols
with small statistical error were used in the present study, the
difference cannot arise from the lack of convergence of the
simulations. It is possible, though not likely, that the relatively
small size of the water box (122 water molecules) with a
relatively short cutoff radius plays a role. However, it has been
shown recently that the result of the ethane to methanol free
energy simulation depends strongly on small changes in the
point charges used for methyl carbons and hydrogens.24 It was
found that a free energy difference of solvation between ethane
and methanol of-7.9 kcal/mol is obtained for charges fitted to

TABLE 6: Results of the Single Topology Simulations ((a)
PERT1,a (b) PERT2,g and (c) PERT2Cb) for the Free Energy
Difference of Solvation in Transforming Ethane into
Methanol

(a) PERT1

∆APERT1,gas
c ∆APERT1,solu ∆∆APERT1,solv

total 5.7(0.1) -2.8(-0.9) -8.5(1.0)
contributions

bond 1.8(0.0) 2.1(0.0) 0.3(0.0)
angle 0.7(0.0) 0.6(0.0) -0.1(0.0)
Urey-Bradley -0.8(0.0) -0.8(0.0) 0.0(0.0)
dihedral -0.5(0.1) -0.5(0.0) 0.0(0.1)
VdW 0.1(0.0) -2.4(0.5) -2.5(0.5)
electrostatic 4.4(0.0) -1.8(0.4) -6.2(0.4)

estimate of contributions
to bonded componentsd

vibrational 0.35 0.35 0.0
Jacobian factor 0.26 0.26 0.0

(b) PERT2g

∆APERT2,gas
e ∆APERT2,solu ∆∆APERT2,solv

total 9.5(0.1) 0.6(0.1) -8.8(0.2)
contributions

bond 7.4(0.0) 6.6(0.2) -0.8(0.2)
angle 0.6(0.0) 0.6(0.0) 0.0(0.0)
Urey-Bradley -1.7(0.0) -1.7(0.0) 0.0(0.0)
dihedral -0.4(0.0) -0.4(0.0) 0.0(0.0)
VdW -0.2(0.0) -1.6(0.1) -1.4(0.1)
electrostatic 3.7(0.0) -2.9(0.1) -6.6(0.1)

estimate of contributions
to bonded componentsd

vibrational 0.35 0.35 0.0
Jacobian factor 4.10 4.10 0.0

(c) PERT2Cb

∆APERT2,gas ∆APERT2,solu ∆∆APERT2,Csolv

total 9.1(0.1) 0.2(0.1) -8.9(0.2)
contributions

bond ()constraintf) 8.5(0.0) 7.6(0.1) -0.9(0.2)
angle 0.7(0.0) 0.6(0.0) -0.1(0.0)
Urey-Bradley -3.1(0.0) -3.1(0.0) 0.0(0.)
dihedral -0.4(0.0) -0.4(0.1) 0.0(0.1)
VdW -0.2(0.0) -1.7(0.1) -1.5(0.1)
electrostatic 3.7(0.0) -2.9(0.0) -6.6(0.1)

estimate of contributions
to bonded componentsd

vibrational
Jacobian factor 4.10 4.10 0.0

a Calculation in which the bond lengths to dummy atoms were
unchanged dummy atom type D1. All free energy differences are in
kcal/mol. The values listed are the average of at least two simulations
(cf. the description of the simulations, section 2c), and the values in
parentheses are the corresponding standard deviation.b Calculations
with reduced bond lengths to dummy atoms, dummy atom type D2.
Bond lengths of the solute were constrained using SHAKE. All free
energy differences are in kcal/mol. The values listed are the average
of at least two simulations (cf. the description of the simulations, section
2c), and the numbers in parentheses are the corresponding standard
deviation.c Using normal mode analysis, a gas phase free energy
difference of 5.8 kcal/mol is obtained (this includes the contribution
due to the change in moment in inertia).d These contributions to the
bond(ed) free energy components listed above were estimated with the
analytical formulas developed in section 2c of the companion paper.10

Only contributions from changes in equilibrium bond lengths and bond
stretching force constants are included; the neglect of contributions from
bond angle and Urey-Bradley terms is discussed in the text.e Using
normal mode analysis, a gas phase free energy difference of 9.6 kcal/
mol is obtained (this includes a contribution due to the change in the
moment of inertia).f Obtained as constraint correction using eq 29 of
the companion paper.10 g Calculation with reduced bond lengths to
dummy atoms, dummy atom type D2. All free energy differences are
in kcal/mol. The values listed are the average of at least two simulations
(cf. the description of the simulations, section 2c), and the values in
parentheses are the corresponding standard deviations.
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the electrostatic potential surface (EPS) from ab initio calcula-
tions on the 6-31G* level, compared to-12.2 kcal/mol (!) for
charges derived from a Mulliken population analysis of the same
quantum mechanical calculations. It was also pointed out that
some of the early calculations may correspond to unconverged
results, which fortuitously were in better agreement with
experiment.24 The Mulliken population analysis results in a
negative partial charge on the methyl carbon (-0.471) and
positive partial charges on the methyl hydrogens (0.157); the
opposite result (positive partial charges on the carbon (0.027),
negative partial charges on the hydrogens (-0.009)) is obtained
with the EPS method. The parameters used in the present study
(Supporting Information) fall between the two extremes com-
pared in Ref 24, and so the value for the solvation free energy
change seems reasonable.

The very similar results obtained with different simulation
methodologies and protocols (which are presented and discussed
individually below) provide strong evidence for the fact that
-8.7 ( 0.2 kcal/mol is the correct free energy difference of
solvation between ethane and methanol for the parameters and
system size (water box) used here. Consequently, the detailed
analysis of the results is expected to be meaningful, even if
they do not reproduce the exact experimental value.

Dual Topology Simulations.Table 5 contains the results of
the dual topology simulations that determine the free energy
difference of solvation between ethane and methanol. A dual
topology methodology employing an ideal gas molecule end
state was used (see section 2c). As discussed in section 2b and
d of the companion paper,10 this implies that vibrational and
Jacobian factor contributions arising from changes of the bonded
energy terms (bond stretching, bond angle bending and Urey-
Bradley terms) are omitted in both the gas phase and in the
solution calculations. The free energy components obtained from
a decomposition of the respective overall free energy difference
are included in Table 6. The first three columns in Table 5 list
the gas phase free energy difference, the result of the solvation
calculation, and the double free energy difference of solvation
∆∆Asolv ) ∆Asolu - ∆Agas, respectively. The last column
contains the double free energy of solvation calculated under
the assumption that the self-terms in∆Asolu and∆Agas, which
in this case consist of dihedral and intramolecular nonbonded
interactions, cancel from the thermodynamic cycle; we refer to
this result as∆∆A*. It is obtained from the calculation that was
used to determine∆Asolu. The results for∆∆A and∆∆A* listed
in Table 5 are essentially identical. The dihedral contribution
of -0.1 kcal/mol to∆∆A, which is not included in∆∆A*, is
small and statistically not significant: it has the highest relative
error (compared to its absolute magnitude), both in the gas phase
and in solution.

Since bond and bond angle terms are not included in the
calculated free energy (i.e., these terms were not scaled as a

function of λ; see section 2d of the companion paper), neither
step of the thermodynamic cycle (gas phase or solution) yields
the true free energy difference between ethane and methanol.
However, the correct solvation free energy difference is obtained
since the same reference state is used for both∆Agasand∆Asolu;
i.e., the intrasolute energy terms are treated in the same manner
in the gas phase and in solution. This behavior is analogous to
that of the one-dimensional model systems discussed in section
3a.

The gas phase free energy difference is large and favors
ethane relative to methanol. As can be seen from the component
analysis, the source of this difference is the intramolecular
electrostatic interaction. It arises from the repulsive interaction
between the charges (0.09e) on the hydrogens in the methyl
groups and the large charge (0.43e) on the hydroxyl hydrogen
of methanol versus the smaller repulsion between the two sets
of methyl hydrogens in ethane. Since the dual topology results
do not contain any bond or bond angle contributions, the self-
term consists of the electrostatic interactions plus the dihedral
and van der Waals interactions. Both of the latter are relatively
small in the gas phase. Although the electrostatic self-term is
large in the gas phase, it essentially cancels from the double
free energy difference as reflected by the good agreement
between∆∆A and∆∆A*. Further, comparing∆Asolv with ∆Agas,
we see that the electrostatic destabilization of methanol relative
to ethane in the gas phase is more than compensated by the
solute-solvent electrostatic interactions in solution. In addition,
the van der Waals contribution in solution also favors methanol
since it is slightly smaller than ethanol (cf. the parameters listed
in Supporting Information).

The decomposition made here, which provides insights into
the nature of the contributions to the free energy, depends on
the consistent use of component analysis; i.e., the same local
path is used for∆Agas and∆Asolu (see Ref 36).

Single Topology Results.As described in the Methods section,
several different single topology calculations are performed to
make clear the role of dummy atoms. Table 6a contains the
results for ethane to methanol(D1), (∆)∆APERT1; Table 6b lists
the analogous results for ethane to methanol(D2), (∆)∆APERT2;
and Table 6c gives the results for ethane to methanol(D2)
simulations, in which all bond lengths of the solute were
constrained by the use of SHAKE,61 (∆)∆APERT2C. The three
columns of each table contain the gas phase free energy
difference between ethane and methanol∆Agas, the correspond-
ing free energy difference in solution∆Asolu, and the free energy
difference of solvation∆∆Asolv ) ∆Asolu - ∆Agas, respectively.
Both the overall (double) free energy differences, as well as
the free energy components segregated according to type of
interaction energy (bond, bond angle, etc.), are listed. In addition,
the vibrational and Jacobian factor contributions due to all
changes in bond stretching terms are reported. These last two

TABLE 7: Comparison of Free Energy Differences of Solvation between Ethane and Method Obtained with the Various
Protocolsa

contributions

∆∆ABLOCK ∆∆A*BLOCK ∆∆APERT1 ∆∆APERT2 ∆∆APERT2C

bond 0.3(0.0) -0.8(0.2) -0.9(0.1)c
angle -0.1(0.0) 0.0(0.0) -0.1(0.0)
Urey-Bradley 0.0(0.0) 0.0(0.0) 0.0(0.0)
dihedral -0.1(0.2) 0.0(0.1) 0.0(0.0) 0.0(0.1)
VdW -2.3(0.2) -2.2(0.2) -2.5(0.5) -1.4(0.1) -1.5(0.1)
electrostatic -6.3(0.2) -6.3(0.2) -6.2(0.4) -6.6(0.1) -6.6(0.0)

total -8.7(0.5) -8.5(0.4) -8.5(1.0) -8.8(0.2) -8.9(0.1)

a All free energy differences are in kcal/mol. The numbers in parentheses are the corresponding standard deviations. As all entries refer to free
energy differences of solvation, the subscript solv used in Tables 5 and 6a-c was dropped.b See footnoteb in Table 5.c Obtained as constraint
correction using eq 29 of the companion paper.10
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quantities are not additional free energy components; they are
a part of the bonded free energy components. As derived in
section 2c of the companion paper,10 bonded free energy
components, i.e., free energy components due to bond stretching,
angle bending, and Urey-Bradley terms of the potential energy
function, originate from a number of physical effects: vibra-
tional, Jacobian factor, and pmf-type contributions plus coupling
among them. On the basis of analytical formulas of the
companion paper, it is straightforward to calculate the vibrational
and Jacobian factor contributions of the bond stretching terms,
and these are listed in Tables 6a-c. However, the simultaneous
use of bond angle and Urey-Bradley energy terms for the angle
bending degrees of freedom makes it difficult to do the same
for these terms (cf. section 2c of the companion paper). Since
a number of bond angle parameters change during the alchemical
mutation of ethane into methanol, the calculation would be rather
complex. While Jacobian factor contributions may be safely
neglected as all equilibrium angles are within a very narrow
range of(4°, the force constants differ considerably between
the initial and final states. However, in all instances when a
weaker bond angle force constant is replaced by a stronger one,
there is a corresponding loss of a Urey-Bradley term (e.g.,
∠CT3-CT3-HA to ∠CT3-OH1-H or ∠HA-CT3-CT3 to
∠HA-CT3-OH1). Inserting the actual values (Table d in
Supporting Information) into the first-order approximation to
obtain an effective angle bending force constant Kθ,eff for the
bond angle and Urey-Bradley interaction energy, i.e., Kθ,eff )
Kθ + KUB (section 2c of the companion paper10), one can deduce
that the resulting vibrational contribution, which is proportional
to ln(Kf

θ,eff/Ki
θ,eff), is small because of these two canceling

effects. In other cases, the force constants involved remain
unchanged. The improved approximation outlined in section 2c
of the companion paper10 is quite involved in the case of such
coupled degrees of freedom, as in a methyl group or the
hydroxyl group plus two dummy atoms. Considering that the
contributions are expected to be small and that the error in the
component analysis due to statistical fluctuations may well be
nonnegligible, we list only the unambiguous partial contributions
from bond stretching degrees of freedom. Pmf-type contributions
can be obtained only as the difference between the bonded free
energy components from a decomposition and the sum of
vibrational plus Jacobian factor contributions. Because of the
problems in reliably determining the latter for this system, we
estimate pmf-type contributions by comparing free energy
components among the various simulation methodologies (dual
vs single topology, PERT1 vs PERT2); this is described in detail
below. The results of such comparisons are not exact, and so
we do not include the values in Tables 6a-c.

The difference between methanol(D1), (∆)∆APERT1, and
methanol(D2), (∆)∆APERT2, is the equilibrium bond length of
the hydroxyl oxygen to dummy atom bonds, as well as the
corresponding Urey-Bradley parameter. The total free energy
differences in the gas phase and in solution are different in the
two calculations since the endpoints of the simulations are
different, although the (double) free energy difference of
solvation agrees (within error bars), as it must. The differences
between the PERT1 and PERT2 results (both gas phase and
solution) are primarily caused by the Jacobian factors from the
different bond length to dummy atoms. Following ref 18 and
ignoring any vibrational and Jacobian factor contributions from
bond angle/Urey-Bradley terms due to the complications just
discussed, these can be estimated to be-4kBTln5 ) -3.8 kcal/
mol, which coincides with the difference between∆APERT1,gas

) 5.7 kcal/mol and∆APERT2,gas ) 9.5 kcal/mol (see the

respective first column of Tables 6a and b) and is quite close
to the-3.4 kcal/mol difference between∆APERT1,solu) -2.8
kcal/mol and∆APERT2,solu) 0.6 kcal/mol (see second column
of Tables 6a and b). Also, the omitted contributions from the
coupled change in Urey-Bradley 1-3 distances are expected
to be small (cf. discussion in previous paragraph).

In addition to the different Jacobian factor contribution to
the free energy difference (∆APERT1,gasand∆APERT2,gas), there
is also a different pmf contribution that depends on whether
the bonds to the dummy atoms remain the same (PERT1) or
are shrunk/grown (PERT2). This affects the free energy
components rather than the total free energy difference; i.e.,
bond, van der Waals, and electrostatic free energy components
differ significantly between PERT1 and PERT2. One can
distinguish between two pmf-type free energy contribution, one
due to the intramolecular nonbonded interactions and the other
due to solute-solvent interactions. In the gas phase only the
former is present. It originates from the change of the intramo-
lecular 1-4 interactions when the geometry of the system (bond
lengths and bond angles) is altered in going from ethane to
methanol. Combined with the Jacobian factor contribution, this
explains the differences in bond, Urey-Bradley (which are
coupled to the equilibrium bond lengths), van der Waals, and
electrostatic free energy components for∆APERT1,gas and
∆APERT2,gas. The dihedral and bond angle components, which
are treated identically in the two protocols, agree within the
error bars of the calculation. In solution, there are additional
pmf-type contributions from the change in solute-solvent
interaction as a result of changes in the solute geometry (bond
lengths and bond angles).

A careful comparison of the free energy components listed
in Tables 6a and b makes it possible to distinguish pmf
contributions caused by the intrasolute 1-4 nonbonded interac-
tions from those caused by the solvent and to determine whether
they arise from physical changes in bond and bond angle terms
due to the transmutation of ethane into methanol or from the
treatment of the unphysical bonds to dummy atoms. Such an
analysis assumes that vibrational and Jacobian factor contribu-
tions cancel in the thermodynamic cycle, which is the case
unless there is significant coupling with the nonbonded interac-
tions. In the simple model systems studied so far (section 3a
and b), coupling between vibrational and Jacobian factor
contributions on the one hand and pmf-type contributions on
the other hand was observed only in the case of untypically
low force constants. For the present case, coupling cannot be
excluded rigorously, but it is expected to be small relative to
the term of interest. Looking at the bonded free energy
components (bond, bond angle, and Urey-Bradley) of the free
energy difference of solvation (third column in Tables 6a-c),
we can immediately discard the Urey-Bradley component as
a source of coupling as it is zero in all three cases. In the case
of constrained bond terms (PERT2C) there are neither vibra-
tional contributions nor coupling between Jacobian factor and
pmf-type contributions. Since the bond component in the PERT2
result (-0.8 ( 0.2 kcal/mol) is the same (within error bars) as
the bond or, more exactly, constraint component in the PERT2C
result (-0.9( 0.1 kcal/mol), it can be identified as a pmf-type
contribution; i.e., it is highly unlikely that any coupling
contributions are contained in the PERT2 bond component
(where, in principle, they cannot be ruled out). Finally, the angle
component of the free energy difference of solvation is small
in all three cases (e0.1 kcal/mol), so that any resulting coupling
will be negligible. Thus, coupling contributions, if any, will be
neglected in the following analysis.
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The gas phase by definition contains only intra-solute pmf-
type contributions. In the PERT1 calculation there is no pmf-
type contributions from the bonds to dummy atoms as their bond
length is not changed. The formal bond, bond angle (and Urey-
Bradley) contributions obtained in the gas phase mainly reflect
the potential of mean force of the 1-4 intrasolute interactions,
as well as (small) vibrational (0.35 kcal/mol) and Jacobian factor
(0.26 kcal/mol) contributions. The two values from Table 6a
for the vibrational and Jacobian factor contributions, respec-
tively, include only the contributions for the bond stretching
terms for the reasons outlined above. When one subtracts the
gas phase free energy components from the solvation data; i.e.,
when one calculates the free energy of solvation, one is left
with the potential of mean force contributions from the solvent.
As seen in Table 6a we find 0.3 kcal/mol as the bond
contribution and-0.1 kcal/mol as the bond angle contribution.
These values are relatively small, but the bond and bond angle
changes to which they correspond are small as well (e0.15 Å
difference in bond lengths ande4° for bond angles). In other
cases larger effects could result.

Repeating this procedure for the PERT2 calculation, we find
a pmf-type contribution due to the interaction with the solvent
of -0.8 kcal/mol, which shows up as the formal bond
contribution to ∆∆APERT2. The interpretation of the bond
components of∆∆Asolv as being pmf-type contributions is
supported by the observation that the differences in∆∆Abond

for the two systems (PERT1 and PERT2) are accompanied by
a reciprocal change in the formal nonbonded contributions,
mainly, ∆∆AvdW. Thus, the bond components of∆∆Asolv of
PERT1 and PERT2 (third column, second row in Tables 6a
and b, respectively), which correspond to the solvent induced
potential of mean force contributions, differ by approximately
1 kcal/mol. Since the only difference between the PERT1 and
the PERT2 simulations is the equilibrium bond length of the
bonds to the two the dummy atoms, this difference of 1 kcal/
mol is seen to be caused solely by the two bonds involving the
dummy atoms. This demonstrates the influence which the
treatment of the unphysical dummy atoms has on the free energy
components.

Protocols in which the bond lengths to dummy atoms are
very short (<0.5 Å vs normal bond length of>1.0 Å) have
been suggested as a tool to improve the convergence of free
energy simulations (cf. e.g., refs 28, 37, and 38. The overall
result for the free energy of solvation obtained for the two
parametrizations of the bonds to the dummy atoms (PERT1 vs
PERT2) agrees within 0.3 kcal/mol in the present case.
However, the uncertainty of the result is significantly larger for
the PERT1 calculations relative to PERT2. The free energy
components indicate where the errors originate. Comparing
Table 6a with Tables 6b and c, we see that the main contribution
comes from the solute-solvent van der Waals and electrostatic
interactions. Most of the error can be traced to the interval 0.6
< λ < 1.0; i.e., the methanol end of the simulation where the
difference in the bond length to the dummy atoms is most
important (data not shown). A similar analysis in the dual
topology case (results not shown) also identifies the range 0.6
< λ < 1.0 as the main source of error.

The results for the system with constrained bonds (∆)∆APERT2C

are summarized in Table 6c. Bond free energy components are
replaced by the corresponding constraint correction.28 The free
energy difference of solvation agrees well with the results for
the flexible systems. As already pointed out, this confirms that
for the ethane/methanol system the harmonic bond terms do
not couple to nonbonded solute-solvent interactions. The

overall gas phase and solution free energy differences deviate
by 0.4 kcal/mol for the system with and without constraints
(cf. Tables 6b and 6c). To interpret this result, we write the
(gas phase) free energy of a polyatomic molecule within the
rigid rotor, harmonic oscillator (RRHO) approximation as18,29

Introducing bond length constraints does not affect the Jacobian
factors ∏iJis in the above equation;18 the force matrixFS,
however, is changed as degrees of freedom are removed. In
other words, the constrained system lacks the vibrational bond
contribution present in the flexible system due to the changes
in the force constants between ethane and methanol (see
parameters in Table 2). This contribution from the change in
force constants of the harmonic bond stretch terms (computed
under the assumption that the force constants which are different
between ethane and methanol describe independent harmonic
oscillators) has been listed in Tables 6a and b. The value of
0.35 kcal/mol (obtained using the force constants listed in Table
c in Supporting Information) is in good agreement with the
difference of 0.4 kcal/mol between the results for the flexible
(Table 6b) and rigid systems (Table 6c). In addition, the bond/
constraint and Urey-Bradley free components in the gas phase
and in solution are not the same as those for the flexible and
rigid calculations. In particular, there is a large difference for
the Urey-Bradley free energy component. As one sees from
Tables 6b and c, its absolute value increases from-1.7 kcal/
mol for the flexible system (PERT2) to-3.1 kcal/mol for the
rigid system (PERT2C), both in the gas phase and in solution.
This more negative Urey-Bradley free energy component is
almost exactly compensated by a more positive bond free energy
component, 8.5 instead of 7.4 kcal/mol in the gas phase and
7.6 instead of 6.6 kcal/mol in solution, respectively. This
behavior reflects the strong coupling between equilibrium bond
lengths and Urey-Bradley free energy contributions (cf. the
discussion of angle bending degrees of freedom in section 2c
of the companion paper.10)

Comparison of Single and Dual Topology Results.A sum-
mary of the results for the ethane-methanol system is presented
in Table 7. The average free energy difference of solvation
between ethane and methanol found with the various protocols
is -8.7 ( 0.2 kcal/mol (average over all∆∆Asolv values listed
in Table 7). The narrow range of the results (all within the
estimated standard deviation) provides numerical confirmation
that none of the approaches for calculating∆∆Asolv omits
significant contributions. In particular, the two dual topology
results (∆∆ABLOCK and∆∆ABLOCK*) do not omit any relevant
contributions from the double free energy of solvation, although
they exclude vibrational and Jacobian factor contributions in
the individual steps of the thermodynamic cycle. The compo-
nents of ∆∆ABLOCK (dual topology) and∆∆APERT1 (single
topology) are nearly the same; the small differences in non-
bonded contributions are compensated by the presence of
bonded terms in the single topology result. This is also in accord
with the identification of these bond and bond angle components
as pmf-type contributions. All of the bonded contributions in
∆∆APERT1are small in this case. They could be larger in other
systems, but the identification as pmf contributions would still
hold.

Comparisons of the gas phase and the solvation calculations
in dual topology (Table 5) and single topology (Tables 6a-c)
serve to increase our understanding, though they have to be

A ) -kBTln
(2πkBT)3N/2-3
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∏
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made with care because the simulations involve different initial
and final states (see sections 2b and e of the companion paper).
In contrast to the∆∆Asolv values in Table 7, the individual gas
phase (∆Agas) and solution results (∆Asolu) of the BLOCK and
PERT1 calculations in Tables 5 and 6a show large differences.
In the gas phase results, the larger bonded free energy
components of the single topology simulations originate in the
vibrational and Jacobian factor contributions (cf. Table 6a) plus
the intramolecular potential of mean force type contributions.
The former two are omitted in the dual topology calculations,
while the latter one is projected on the nonbonded components.
If the dual topology methodology in which bonded terms are
scaled to a limiting value of the force constant (see section 2d
of the companion paper) were used, these bonded contributions
would be accounted for as well. Corresponding considerations
apply to the results of the solvent calculations. The individual
gas phase and solution results of the BLOCK and PERT2
calculations differ by large pmf and (unphysical) Jacobian factor
contributions that are included in PERT2 but not included in
BLOCK.

4. Discussion

A theoretical analysis, given in the companion paper,10 and
the model calculations presented here have been used to examine
the role of bond stretching and bond angle energy terms in free
energy simulations. In the companion paper10 a number of
results were obtained which we summarize briefly: (i) Practical
approaches to compute free energy differences due to changes
in bonded terms were compared. It was shown that in thermo-
dynamic integration, changes in bond stretching and bond angle
terms are straightforward to incorporate in the standard meth-
odology. By contrast, there are practical difficulties in the
exponential formula if flexible bond terms are used (cf. ref 6),
although a method for overcoming this limitation has been
proposed.12 Overall, thermodynamic integration appears to be
more flexible and easier to use in this regard. Three methodolo-
gies for calculating the bonded terms in thermodynamic
integration were considered. They are single topology, dual
topology with an ideal gas molecule end state and dual topology
with an ideal gas atom end state. (ii) Any method that attempts
to create or remove a bond(ed) term in a straightforward manner,
i.e. by changing its force constant from or to a zero value, is
likely to lead to erratic results since the theoretical expressions
diverge at the limits; see also Sun et al.9 for a related discussion
that does not provide a full solution to the problem. The
complication that arises can be avoided in two ways. One uses
ideal gas molecules as end states and the other uses a physically
meaningful cutoff. In single topology simulations ideal gas
molecule end states seem to have been used in all practical
applications, although reasons for their use were never given
explicitly. In a number of dual topology calculations, which
used ideal gas atom end states, convergence problems have
arisen.3-5 The theoretical analysis demonstrated that the con-
sistent use of an ideal gas molecule end state is possible in dual
topology and eliminates the convergence problem. In addition,
an approach that avoids the singularity caused by a bond with
a zero force constant by a cutoff was introduced (section 2d of
the compansion paper10). (iii) The free energy contributions
resulting from changes in bonded energy terms were shown to
consist of vibrational, Jacobian factor, and pmf-type contribu-
tions, as well as coupling among these terms. It was demon-
strated that these contributions, although physically meaningful,
appear as different free energy components depending on the
simulation methodology used; i.e., they appear as bonded free

energy contributions in single topology and as nonbonded or a
mixture of bonded and nonbonded contributions in the two dual
topology approaches. (iv) The three methodologies were shown
to lead to identical double free energy differences defined by a
thermodynamic cycle (e.g., a free energy difference of solva-
tion), as they must. However, quite different single free energy
differences can be obtained as different end states are involved.
Thus, it is necessary to use a consistent methodology in the
two parts of any thermodynamic cycle and to be careful in the
description of the physical interpretation of the results.

The model calculations presented in this paper support and
amplify the conclusions of the companion paper.10 The ther-
modynamic integration approach was used throughout because
of complications intrinsic to the exponential formula.6,10,12The
solvation free energies of three systems were examined, using
both single and dual topology approaches. They are (i) two one-
dimensional harmonic oscillators interacting with a third particle
that represents the solvent (an ideal gas atom as well as molecule
end state was used in the dual topology calculations), (ii) the
aqueous solvation of two diatomic molecules, and (iii) the
aqueous solvation of ethane and methanol. In all cases identical
(double) free energy differences of solvation were obtained
within statistical error bars (see, in particular, Tables 3, 4, and
7 and section 3), confirming the theoretical considerations. The
explicit verification of this agreement is important as it allows
one to choose the methodology that is best suited for a given
problem. In contrast to the overall results (the free energy
differences of solvation, which is independent of the method
used), differences were found, as expected,10 in the results for
the respective single free energy calculations and free energy
components (see Tables 3-6 and section 3). A critical com-
parison of the free energy components obtained with different
simulation methodologies that follow different simulation paths,
led to a clear understanding of the physical origin of the various
contributions to the overall results, as summarized below.

The simulations provided representative examples of each
of the physical contributions described in the companion paper,10

i.e., vibrational, Jacobian factor, pmf-type, and coupling con-
tributions. The role of vibrational contributions due to a change
in the force constant is clearly visible in the one-dimensional
model system (section 3a). In the gas phase, it is the only
contribution to the thermodynamic cycle depicted in Figure 1,
and the same result (∆A3 in Table 3a) is obtained with single
topology and dual topology using an ideal gas atom end state
(d.t.2). It is not obtained in the dual topology simulations using
an ideal gas molecule end state (d.t.1 in Table 3a) as this
approach omits vibrational and Jacobian factor contributions.
In the corresponding solvent calculation (∆A4 in Table 3a) the
free energy difference consists of vibrational and pmf-type
contributions. Here the use of dual topology using an ideal gas
atom end state made it possible to separate the two terms into
bond and van der Waals contributions, respectively (d.t.2 entries
in Table 3a), whereas in single topology both appear as part of
the bond free energy component. For the ethane to methanol
calculation, it could be shown that the vibrational contributions
due to the changes in bond stretching force constants are
responsible for the difference of 0.4 kcal/mol between the single
free energy differences (gas phase and solution) obtained with
the PERT2 (flexible bond stretching terms) and the PERT2C
(constrained bond lengths) protocol (Tables 6b and 6c).

The role of Jacobian factors was analyzed in detail in ref 18.
The present results provide additional examples. In the com-
putations of the free energy difference of solvation of two
diatomic solutes (section 3b), the difference of 0.8 kcal/mol
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between the solution results using single and dual topology
(∆Asolu in Table 4) is caused by the automatic inclusion of the
Jacobian factor in the single topology methodology used in
CHARMM14 and its omission in the dual topology methodology
using an ideal gas molecule reference state. (In addition, in this
specific calculation there cannot be a Jacobian factor contribu-
tion as the solute was held fixed in the dual topology
simulations.) The second example is the difference of 3.8 kcal/
mol between the PERT1 and PERT2(C) gas phase (∆Agas) and
solution free energy differences (∆Asolu) for the ethane to
methanol system (Tables 6a-c). This large value was explained
by computing analytically the Jacobian factor contribution due
the change of bond lengths to the dummy atoms (see section
3c).

The meaning of pmf-type contributions in single topology is
evident from a comparison of single and dual topology free
energy components in all three model systems. Particularly
striking are the results for the diatomic molecules in water
(section 3b, Table 4). After subtracting the Jacobian factor
contribution of-0.8 kcal/mol (cf. previous paragraph), the free
energy difference of solvation consists of a pmf-type bond
contribution of-5.9 kcal/mol with the single topology meth-
odology. In the dual topology simulations, the identical result
is obtained, but it consists solely of van der Waals and
electrostatic contributions. This makes clear that pmf-type
contributions describe the change in nonbonded interactions as
a result of a change in molecular geometry.

The presence and magnitude of coupling between the three
contributions just discussed is especially interesting as it is
directly related to the importance ofself-term contributions, to
which we return shortly. In the calculations on the one-
dimensional model system summarized in Tables 3b and c, clear
instances of coupling could be discerned. It becomes important
when the force constant or equilibrium bond length of a weak
bond is changed in the presence of strong nonbonded interac-
tions. On the other hand, when typical values of the force
constant were chosen (e.g., in the ethane to methanol system),
no coupling was observed.

Bond and bond angle terms are part of the intramolecular
term of the hybrid potential energy function (∆Uintra defined in
the Introduction of ref 10) and are commonly associated with
self-termcontributions to the free energy difference;5 i.e., the
free energy components that result from∆Uintra make up the
self-term. Contradictory results are described in the literature
concerning the importance of self-terms. Prevost et al.5 and
Pearlman and Kollman6 found sizable contributions from self-
terms or intraperturbed group contributions. In contrast, refs 7-9
report little or no contributions. Attempts by Nilsson and co-
workers3,4 to resolve this issue failed because of convergence
problems in some of their computations. To be clear about what
is involved, it is essential to understand the differences between
single and dual topology methods, as well as the origin of the
problems encountered during breaking or forming of a bond
term. Both aspects were analyzed theoretically in the companion
paper10 and illustrated by the model simulations. In the following
paragraphs, we consider the results obtained in refs 3-9 and
show how they can be understood by taking account of the
simulation methodology (single or dual topology) used in the
calculation. The classification of a contribution as aself-term
is based, as it should be, on thephysicalsignificance of the
bonded free energy components, which in turn depend on the
simulation path.35,36,39-44

In single topology calculations formal bond (angle) compo-
nents are obtained, so the question regarding the importance of

self-terms can be addressed directly. Clearly, vibrational and
Jacobian factor contributions obtained in such calculations are
self-terms. On the other hand, a pmf-type contribution reflects
the change in nonbonded interactions due to a change in the
equilibrium geometry of (a part of) the system. Thus, the so-
called “overlooked bond-stretching contribution” of Pearlman
and Kollman,6 which is a pmf-type contribution, shouldnot be
interpreted as a self-term (or intra-group perturbed contribution).
This is supported by a comparison of the components of the
free energy difference of solvation between ethane and methanol
listed in Table 7. The bond component between the PERT1 and
the PERT2(C) results differ by more than 1 kcal/mol. However,
it was demonstrated in Section 3c that this bond contribution is
nonbonded in origin, i.e., a pmf-type contribution. This can be
deduced directly from Table 7 by observing that any change in
bonded free energy components is compensated by a reciprocal
change in the nonbonded components. Furthermore, in the
BLOCK, i.e., dual topology, results in Table 7, the bond and
bond angle free energy components obtained in a single topology
calculation are nonbonded components. Thus, while it is
imperative to include the pmf-type contribution to obtain the
correct free energy difference, it is part of the nonbonded free
energy contributions and, therefore, is not a self-term. The only
pmf-type contributions that do involve self-terms arise from
coupling with vibrational and Jacobian factor contributions
because they reflect changes in the intramolecular contributions
(vibrational and Jacobian factor) due to the interaction with
different environments (e.g., gas phase and solution). However,
in the model calculations, coupling was found to be important
only for very weak bonded terms (low force constants). The
influence of solvent on the equilibrium geometry of the solutes
appears to be too small in most cases to lead to significant
differences in the Jacobian factor contributions. Correspond-
ingly, the force constants typically used in molecular mechanics
force fields are too strong to be affected to a significant degree
by nonbonded interactions. Somewhat larger effects might be
found if anharmonicity (e.g., via a Morse potential) were
included in bond stretching. Within the precision of the
calculations, vibrational and Jacobian factor contributions
canceled from the thermodynamic cycles of the two realistic
systems studied here (diatomic molecule in water, ethane to
methanol, section 3b and c). This is in line with the work of
Harris and Loew7 and Rao et al.8 who have suggested that self-
terms are not important. In fact, the present results indicate that
selected terms of the energy function might be omitted from
the free energy formalismunlesssingle free energy differences
are required. However, we feel that it is best not to omit any
such terms because including them does not introduce any
difficulties in the calculations, does not lead to detrimental
effects on the precision of the calculations (in contrast to ref 6)
and avoids problems that could arise from their neglect.

In the studies by Prevost et al.5 and Nilsson and co-workers3,4

a dual topology approach was used. It seems likely from the
present analysis that the significant bond and bond angle
components obtained in these studies are due to inaccuracies
arising from the making and breaking of bonds. In a correct
implementation of the dual topology method, bond and bond
angle terms must be preserved or limiting values of the coupling
parameters have to be used (section 2d of the companion
paper10). The former excludes vibrational and Jacobian factor
contributions from the total free energy difference. As mentioned
earlier, different single free energy differences result, but this
is irrelevant for thermodynamic cycles. This is reflected in the
d.t.1 results for the one-dimensional systems (Tables 3a-c) and
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the dual topology results for the diatomic molecule (Table 4)
and the ethane to methanol system (Tables 5 and 7). Contribu-
tions to self-terms that do not cancel from a double free energy
difference arise only if coupling between these terms and
nonbonded interactions is important; these enter the dual
topology formalism indirectly through the Boltzmann factor.10

Within a dual topology framework that uses an ideal gas
molecule reference state, i.e., bonded terms are not scaled, self-
term contributions to double free energy differences due to bond
(angle) can only be discerned by a comparison of results from
separate calculations using flexible and constrained bond (angle)
terms. This was not done here since equivalent information is
available from a comparison of single and dual topology results.

The present analysis also makes clear that it is essential to
avoid a simplistic comparison of results and conclusions
obtained with single and dual topology methods. A pmf-style
“bond” contribution cannot be obtained in this form in a dual
topology simulation as attempted in refs 3 and 4 in their “FULL”
calculations. We stress that the results of the present study show
that the “DONT” results of refs 3 and 4, in which bond and
bond angle terms were excluded from the free energy formalism,
are, in fact, correct and donot omit any contribution to the
double free energies of interest.

Dihedral angles and intramolecular nonbonded terms can also
make contributions to self-terms. It has been suggested that
dihedral angles might be strongly coupled with nonbonded terms
since their force constants are weak compared to bond stretching
and bond angle terms.45 There are no problems, in principle,
to including dihedral angles explicitly in both dual and single
topology simulations (cf. the ethane/methanol calculations,
sections 2c and 3c) and thus to ensure that no contribution is
omitted from the free energy difference of interest. While the
dihedral angle contribution to the free energy difference of
solvation cancels for the ethane to methanol system (Table 7),
this need not be true in general. However, it should be noted
that the only real complication expected from dihedral angles
is the presence of multiple conformational substates that will
not be sampled adequately in most straightforward computer
simulations. Special techniques have been developed to deal
with this type of problem (see refs 46 and 47, Kuczera and
Karplus, unpublished results). Nonbonded energy terms can also
contribute to self-terms. For the alchemical mutation of neo-
pentane into methane, Pearlman and Kollman reported a con-
tribution of 0.6-0.9 kcal/mol,6 although in later work on solva-
tion free energy differences of fluorocarbons and alkanes from
the same group48,49 these terms were again omitted. For the
ethane/methanol model systems studied here, we did not find
significant contributions from intramolecular nonbonded terms.

In the two papers presented here, the role of bond (angle)
terms in free energy difference simulations was analyzed using
the example of solvation processes. Since there are no funda-
mental differences between solvation calculations and other
applications of free energy simulations, such as determinations
of protein stability5,50,51or ligand binding,52,53the results of this
study remain valid. For example, in the calculation of the
binding free energy difference between two ligands L1 and L2,
the two alchemical mutations involve transformation of ligand
L1 into L2 in solution (this step is identical to the solvation
calculation considered here) and bound to the receptor. In the
latter case, the receptor “replaces” the solvent. The choice of
simulation methodology (single or dual topology) determines
the correct treatment of changes in bond and bond angle
parameters, as well as the interpretation of results. A recent study
that favored single topology because of faster convergence also

found that for certain transformations a dual topology method
is required.11 Equivalent results can be obtained with the two
types of methods provided that the respective “peculiarities”
that have been described here are taken into account. For the
simple solutes used here, the definition of the self-term was
straightforward and corresponded to the intrasolute free energy
contributions. For bigger systems the definition (aside from the
differences arising from the choice of a single vs a dual topology
method) may be less clear (e.g., if in a protein one side chain
is altered alchemically, one has to decide how to consider the
contributions from energy terms involving the backbone atoms
of the mutated residue). Their parameters remain unchanged,
yet they are part of the mutated residue. A good example with
explicit definitions can be found in ref 5. In addition to solvent
pmf-type contributions, which we regard as nonbonded in origin,
self-term contributions were found to be negligible for the model
systems studied. A protein may provide a less isotropic
environment than aqueous solution; it could induce distortions
from the equilibrium geometry (strain) or conformational
changes, which in turn would lead to nonvanishing self-term
contributions. This possibility should be kept in mind and a
generalization of the quantitative results reported here should
be made with care, although the principles are general.

The current study provides a framework for the calculation
and interpretation of bonded terms by single and/or dual
topology free energy simulations on larger systems. In combina-
tion with other recent improvements in methodology, particu-
larly those concerned with the van der Waals endpoint
problem,54-56 the correct treatment of long-range electrostatic
interactions,57,58 and the understanding of the role of Jacobian
factors,18 as well as the availability of more computer time, this
makes possible the performance of converged free energy
simulations for realistic systems of chemical and biological
interest. The results of such simulations and their analysis will,
we believe, find a useful place, as a complement to experiment,
in the elucidation of the properties of complex systems.
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